Novel method to determine accessible volume, area, and pore size distribution of activated carbon
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We present a new procedure to determine the geometric area, accessible pore volume, and pore size distribution of activated carbon, and we test this with a detailed computer simulation study of a number of porous solid models. For these model adsorbents with known atom configurations, we determine the "intrinsic" accessible volume, the surface area, and pore size distribution using the Monte Carlo integration method proposed by Herrera et al. (Herrera, L.; Do, D. D.; Nicholson, D. A Monte Carlo integration method to determine accessible volume, accessible surface area and its fractal dimension. J. Colloid Interface Sci.2010, 348 (2), 529-536). The inverse problem postulates that the theoretical adsorption isotherm is a linear combination of local isotherms, and matches the theoretical isotherm to the "computer- experimental" adsorption isotherm. The results suggest that this method is a promising tool to determine structural parameters of a porous solid. As a corollary, we propose a definition for the absolute isotherm as an alternative to the excess isotherm used in the literature. © 2011 American Chemical Society.
Related items
Showing items related by title, author, creator and subject.
-
Al Hinai, Adnan; Rezaee, M. Reza; Esteban, L.; Labani, Mohammad Mahdi (2014)Pore structure of shale samples from Triassic Kockatea and Permian Carynginia formations in the Northern Perth Basin, Western Australia is characterized. Transport properties of a porous media are regulated by the topology ...
-
Herrera, L.; Fan, Chunyan; Nguyen, V.; Do, D.; Horikawa, T.; Nicholson, D. (2012)Accessible volume, geometrical area and accessible pore size distribution are the fundamental structural parameters in the characterization of porous solids. We provide a novel "inverse" procedure, which is based on the ...
-
Kowalczyk, Poitr; Tanaka, H.; Holyst, R.; Kaneko, K.; Ohmori, T.; Miyamoto, J. (2005)Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs ...