Show simple item record

dc.contributor.authorDeng, Q.
dc.contributor.authorBarton, M.
dc.contributor.authorPuzyrev, Vladimir
dc.contributor.authorCalo, Victor
dc.date.accessioned2017-09-27T10:20:10Z
dc.date.available2017-09-27T10:20:10Z
dc.date.created2017-09-27T09:48:10Z
dc.date.issued2017
dc.identifier.citationDeng, Q. and Barton, M. and Puzyrev, V. and Calo, V. 2017. Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 328: pp. 554-564.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/56638
dc.identifier.doi10.1016/j.cma.2017.09.025
dc.description.abstract

We develop quadrature rules for the isogeometric analysis of wave propagation and structural vibrations that minimize the discrete dispersion error of the approximation. The rules are optimal in the sense that they only require two quadrature points per element to minimize the dispersion error [1], and they are equivalent to the optimized blending rules we recently described. Our approach further simplifies the numerical integration: instead of blending two three-point standard quadrature rules, we construct directly a single two-point quadrature rule that reduces the dispersion error to the same order for uniform meshes with periodic boundary conditions. Also, we present a 2.5-point rule for both uniform and non-uniform meshes with arbitrary boundary conditions. Consequently, we reduce the computational cost by using the proposed quadrature rules. Various numerical examples demonstrate the performance of these quadrature rules.

dc.titleDispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis
dc.typeJournal Article
dcterms.source.volume328
dcterms.source.startPage554
dcterms.source.titleComputer Methods in Applied Mechanics and Engineering
curtin.departmentDepartment of Applied Geology
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record