Show simple item record

dc.contributor.authorWei, J.
dc.contributor.authorYin, YanYan
dc.contributor.authorLiu, F.
dc.date.accessioned2017-09-27T10:21:11Z
dc.date.available2017-09-27T10:21:11Z
dc.date.created2017-09-27T09:48:12Z
dc.date.issued2017
dc.identifier.citationWei, J. and Yin, Y. and Liu, F. 2017. Multi-model approach for nonlinear system identification by EM algorithm. ICIC Express Letters. 11 (9): pp. 1461-1467.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/56861
dc.identifier.doi10.24507/icicel.11.09.1461
dc.description.abstract

The problem of system identification for nonlinear system is studied in this paper by using EM algorithm, and a stochastic scheduling parameter which follows a Markov jump process is considered. First, multi-model approach is addressed to describe the nonlinear process, where each linear parameter system is represented by an auto regressive exogenous model, and then, EM algorithm is used to do estimation with the help of stochastic scheduling parameter. A simulation example is given to illustrate the effectiveness of the approach proposed.

dc.publisherICIC International
dc.titleMulti-model approach for nonlinear system identification by EM algorithm
dc.typeJournal Article
dcterms.source.volume11
dcterms.source.number9
dcterms.source.startPage1461
dcterms.source.endPage1467
dcterms.source.issn1881-803X
dcterms.source.titleICIC Express Letters
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record