Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect

    Access Status
    Fulltext not available
    Authors
    Wu, J.
    Liu, F.
    Yang, H.
    Xu, S.
    Xie, Sam
    Zhang, M.
    Chen, T.
    Hu, G.
    Wang, J.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wu, J. and Liu, F. and Yang, H. and Xu, S. and Xie, S. and Zhang, M. and Chen, T. et al. 2017. Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect. Journal of Industrial and Engineering Chemistry. 56: pp. 342-349.
    Source Title
    Journal of Industrial and Engineering Chemistry
    DOI
    10.1016/j.jiec.2017.07.030
    ISSN
    1226-086X
    School
    Department of Petroleum Engineering
    URI
    http://hdl.handle.net/20.500.11937/56918
    Collection
    • Curtin Research Publications
    Abstract

    Low salinity effect has been in the center of attention as a cost-effective and environmentally friendly technique. Wettability alteration of the oil/brine/mica system appears to be the identified mechanism(s) to trigger the low salinity effect. While the effect of water chemistry and minerology on the wettability of the system has been extensively investigated, few studies have investigated the effect of specific function groups from crude oil on the system wettability, limiting the understanding of how specific functional group contributes to the wettability. We thus experimentally measured the adhesion forces between mica surfaces and functional groups (e.g., C 6 H 5 -, CH 3 -, COOH-, and NH 2 -) in the presence of different aqueous ionic solutions using chemical force microscopy (CFM). Moreover, to understand the contribution of the structural force, the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was extended (denoted as EDLVO) to fit the force profiles using a Gauss model. Our results showed that the adhesion force between mica and functional groups in a decreasing order was -NH 2 > -COOH > -CH 3 > -C 6 H 5 . We also found that while DLVO forces strongly affected the tip-surface contact due to the interactions among oil/brine/mica interfaces, the structural forces also played an important role in a distance of 1-20nm due to the presence of H-bonds between COOH-terminated or NH 2 -terminated tip and mica surface. We therefore conclude that the structural force largely contributes to the adhesion force due to the hydrophilicity or polarity of functional groups, and nucleophilic property (such as phenyl group). Our results suggest that the polarity of the crude oil needs to be considered to screen a candidate reservoir for low salinity water flooding projects.

    Related items

    Showing items related by title, author, creator and subject.

    • Role of Basal-Charged Clays in Low Salinity Effect in Sandstone Reservoirs: Adhesion Force on Muscovite using Atomic Force Microscope
      Al Maskari, N.; Xie, Q.; Saeedi, Ali (2019)
      Low salinity water flooding appears to be an important means to improved oil recovery in sandstone reservoirs. Wettability alteration has been identified as the main effect behind low salinity water flooding due to the ...
    • Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties
      Aubry, C.; Gutierrez, L.; Croue, Jean-Philippe (2013)
      Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic ...
    • Drivers of Wettability Alteration for Oil/Brine/Kaolinite System: Implications for Hydraulic Fracturing Fluids Uptake in Shale Rocks
      Xie, Sam; Chen, Yongqiang; You, L.; Hossain, Mofazzal; Saeedi, Ali (2018)
      Hydraulic fracturing technique is of vital importance to effectively develop unconventional shale resources. However, the low recovery of hydraulic fracturing fluids appears to be the main challenge from both technical ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.