Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Geochemical characterisation of xenotime formation environments using U-Th

    Access Status
    Fulltext not available
    Authors
    McNaughton, Neal
    Rasmussen, B.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    McNaughton, N. and Rasmussen, B. 2017. Geochemical characterisation of xenotime formation environments using U-Th. Chemical Geology. 484: pp. 109-119.
    Source Title
    Chemical Geology
    DOI
    10.1016/j.chemgeo.2017.08.016
    ISSN
    0009-2541
    School
    John de Laeter Centre
    URI
    http://hdl.handle.net/20.500.11937/56941
    Collection
    • Curtin Research Publications
    Abstract

    Xenotime (YPO4) is a trace component in many metasedimentary and some igneous rocks, altered rocks and many hydrothermal ore assemblages, where it forms in response to a range of different processes from igneous crystallisation to low-temperature early diagenesis. Due to its wide range of formation temperatures, its suitability and isotopic robustness for reliable U-Pb geochronology, dissolution/precipitation characteristics during overprint events, and widespread occurrence, it is one of the most valuable minerals for U-Pb geochronology leading to four-dimensional (4D) studies of many terranes. The formation environment of xenotime can be deduced from careful petrography and reliable U-Pb in-situ geochronology within a 4D framework. Further, xenotime is a physically robust mineral during sediment transport and may carry distinctive geochemical fingerprints, including age, to secondary environments.From published works, we review the U-Th-contents of well-characterised examples of xenotime formation to provide chemical fingerprints, which assist in identifying the xenotime formation environment. Although the U-Th characteristics of xenotime from all formation environments show considerable overlap, we make the following observations which may be distinctive of some ore formation environments: (i) hydrothermal xenotime formed from low salinity ore fluids (e.g. iron ore and orogenic gold deposits) trend to have the lowest U-contents ( < . 100. ppm U) and U/Th ( < . 4), in contrast to xenotime formed from higher salinity ore fluids (Sn-W and base metal deposits); (ii) xenotime associated with unconformity-related U-ores have the highest U-contents at U/Th. > . 10; (iii) diagenetic xenotime has the most variable and highest U/Th, whereas (iv) xenotime from Precambrian orogenic gold deposits has the least variable and lowest U/Th.Petrogenetic inferences from these observations for ore deposit research and exploration include: (i) support for the homogenising effect of the crustal scale of the fluid system in Precambrian orogenic gold deposits, and (ii) the potential for distinctive U-Th geochemical fingerprints for U ores and some Au ores. These characteristics may be reflected in detrital xenotime grains recovered from routine exploration sampling programs.

    Related items

    Showing items related by title, author, creator and subject.

    • Dating fluid flow and Mississippi Valley type base-metal mineralization in the Paleoproterozoic Earaheedy Basin, Western Australia
      Muhling, Janet; Fletcher, Ian; Rasmussen, Birger (2012)
      The ages of deposition and metamorphism of low-grade Precambrian metasedimentary sequences canbe difficult to define in the absence of interlayered volcanogenic rocks. Monazite and xenotime can growat temperatures below ...
    • In Situ U–Pb Monazite and Xenotime Geochronology of the Abra Polymetallic Deposit and Associated Sedimentary and Volcanic Rocks, Bangemall Supergroup, Western Australia
      Rasmussen, Birger; Fletcher, Ian; Muhling, J.; Gregory, Courtney; Thorne, A.; Cutten, H.; Pirajno, F.; Hell, A. (2010)
      Abra is a major lead–silver–copper–gold deposit within the Bangemall Supergroup that has a total indicated and inferred resource estimate of 93 million tonnes at 4.0% lead and 10 g/t silver and 14 million tonnes at 0.6% ...
    • Shock deformation microstructures in xenotime from the Spider impact structure, Western Australia
      Cox, Morgan A.; Cavosie, Aaron ; Poelchau, M.; Kenkmann, T.; Bland, Phil ; Miljkovic, Katarina (2021)
      The rare earth element-bearing phosphate xenotime (YPO4) is isostructural with zircon, and therefore it has been predicted that xenotime forms similar shock deformation microstructures. However, systematic characterization ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.