Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Synthesis Process and Properties of V5+-Doped LiFePO4/C

    Access Status
    Fulltext not available
    Authors
    Shao, Zongping
    Xia, J.
    Liu, X.
    Li, G.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shao, Z. and Xia, J. and Liu, X. and Li, G. 2016. Synthesis Process and Properties of V5+-Doped LiFePO4/C. Materials and Manufacturing Processes. 31 (6): pp. 695-700.
    Source Title
    Materials and Manufacturing Processes
    DOI
    10.1080/10426914.2015.1037908
    ISSN
    1042-6914
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/57022
    Collection
    • Curtin Research Publications
    Abstract

    Olivine structure LiFe1−xVxPO4/C (x = 0.02, 0.04, 0.06) composite materials as the cathode for lithium ion batteries were synthesized by carbon-thermal reduction method, using Fe(NO3)3 · 9H2O, LiH2PO4, NH4VO3, and C6H12O6 (glucose) as raw materials. The X-ray diffraction (XRD), scanning electronic microscope (SEM) laser particle size analysis, specific surface area tester, and electrochemical performance testing were used to study its structure, morphology, and electrochemical properties. The results showed that the diffraction peaks of the prepared materials correspond to the single phase of LiFePO4/C and can be indexed as the olivine structure. Particle diameter of LiFe1−xVxPO4/C (x = 0.04) was uniform. Specific surface areas of materials are all increased. An electrochemical test showed that LiFe1−xVxPO4/C (x = 0.04) demonstrated a better electrochemical capacity of 141.065 mAh · g−1 at 0.1C rate, and which had an increase of 10.77% than the un-doped sample. After 20 cycles, charge and discharge specific capacity almost had no attenuation.

    Related items

    Showing items related by title, author, creator and subject.

    • The development of a rigorous nanocharacterization scheme for electrochemical systems
      Veder, Jean-Pierre M. (2010)
      This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
    • Investigation of the impact of nitrate injection to control sourcing problem in oil reservoir : benefit and side effects on steel materials
      Halim, Amalia Yunita (2011)
      The successful control of reservoir souring by nitrate injection has been well documented in the literature. Recent interest has centred on how nitrate application can increase the corrosion risk in pipelines and metal ...
    • Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
      Mao, J.; Hou, X.; Wang, X.; He, G.; Shao, Zongping; Hu, S. (2015)
      Novel corncob-shaped ZnFe2O4/C nanostructured composite materials have been successfully synthesized through a facile co-precipitation method with carbamide as carbonaceous matrix. The morphology and structure of the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.