Stabilising nanofluids in saline environments
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO 2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mecha nisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added.
Related items
Showing items related by title, author, creator and subject.
-
Sharma, T.; Iglauer, Stefan; Sangwai, J. (2016)Oil production from matured crude oil reservoirs is still associated with low recovery factors. Chemical enhanced oil recovery (EOR) is one of the techniques which can significantly improve the recovery factor of the ...
-
Al-Anssari, Sarmad Foad Jaber (2018)Nanofluids gaining increased importance in science and industry including enhanced oil recovery. In this work, the ability of nanoparticles to alter the wettability of oil-wet surfaces towards water-wet at reservoir ...
-
Al-Anssari, S.; Nwidee, L.; Arif, M.; Wang, Shaobin; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2017)Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery ...