Joint Channel and Impulsive Noise Estimation in Underwater Acoustic OFDM Systems
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
IEEE Impulsive noise is one key factor that limits the performance of underwater acoustic (UA) communications. In this paper, two pilot-subcarrier based algorithms are proposed to improve the performance of channel estimation and impulsive noise mitigation for UA orthogonal frequency-division multiplexing (OFDM) systems. The first algorithm jointly estimates the channel and the impulsive noise based on the least-squares (LS) principle. The second algorithm is developed with the aim to reduce the computational complexity, where the expectation-maximization (EM) principle is applied to estimate the channel and the impulsive noise iteratively. We compare the proposed algorithms by simulations and apply them to process the data collected during an experiment conducted in December 2015 in the estuary of the Swan River, Western Australia. The results show that both proposed algorithms have better performance than existing methods in mitigating impulsive noise in UA OFDM systems.
Related items
Showing items related by title, author, creator and subject.
-
Chen, Jaden; Rong, Yue; Nordholm, Sven; He, Z.; Duncan, Alec (2017)IEEE Impulsive noise occurs frequently in underwater acoustic (UA) channels and can significantly degrade the performance of UA orthogonal frequency-division multiplexing (OFDM) systems. In this paper, we propose two novel ...
-
Abd El-Sallam, Amar (2005)New approaches and algorithms are developed for the identification and estimation of low order models that represent multipath channel effects in Code Division Multiple Access (CDMA) communication systems. Based on these ...
-
Wang, S.; He, Z.; Niu, K.; Chen, Jaden ; Rong, Yue (2020)Impulsive noise can greatly affect the performance of underwater acoustic (UA) orthogonal frequency-division multiplexing (OFDM) systems. In this paper, by utilizing the sparsity of the UA channel impulse response and ...