Prospects for detecting ultra-high-energy particles with FAST
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
The origin of the highest-energy particles in nature, the ultra-high-energy (UHE) cosmic rays, is still unknown. In order to resolve this mystery, very large detectors are required to probe the low flux of these particles - or to detect the as-yet unobserved flux of UHE neutrinos predicted from their interactions. The `lunar Askaryan technique' is a method to do both. When energetic particles interact in a dense medium, the Askaryan effect produces intense coherent pulses of radiation in the MHz--GHz range. By using radio telescopes to observe the Moon and look for nanosecond pulses, the entire visible lunar surface ($20$ million km$^2$) can be used as an UHE particle detector. A large effective area over a broad bandwidth is the primary telescope requirement for lunar observations, which makes large single-aperture instruments such as the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) well-suited to the technique. In this contribution, we describe the lunar Askaryan technique and its unique observational requirements. Estimates of the sensitivity of FAST to both the UHE cosmic ray and neutrino flux are given, and we describe the methods by which lunar observations with FAST, particularly if equipped with a broadband phased-array feed, could detect the flux of UHE cosmic rays.
Related items
Showing items related by title, author, creator and subject.
-
Bray, J.; Ekers, Ronald; Roberts, P.; Reynolds, J.; James, C.; Phillips, C.; Protheroe, R.; McFadden, R.; Aartsen, M. (2015)© 2015 American Physical Society. We report a limit on the ultrahigh-energy neutrino flux based on a nondetection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio ...
-
Bray, J.; Alvarez-Muniz, J.; Buitink, S.; Dagkesamanskii, R.; Ekers, Ronald; Falcke, H.; Gayley, K.; Huege, T.; James, C.; Mevius, M.; Mute, R.; Protheroe, R.; Scholten, O.; Spencer, R.; Veen, S. (2014)The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Only the most energetic of these have sufficiently small angular deflections to be used for directional ...
-
James, C.; Alvarez-Muñiz, J.; Bray, J.; Buitink, S.; Dagkesamanskii, R.; Ekers, Ronald; Falcke, H.; Gayley, K.; Huege, T.; Mevius, M.; Mutel, R.; Protheroe, R.; Scholten, O.; Spencer, R.; Ter Veen, S. (2015)The lunar Askaryan technique is a method to study the highest-energy cosmic rays and their predicted counterparts, the ultra-high-energy neutrinos. By observing the Moon with a radio telescope, and searching for the ...