Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Significant roles of inherent fine included mineral particles in the emission of PM1-10during pulverised coal combustion

    Access Status
    Fulltext not available
    Authors
    Gao, X.
    Wu, Hongwei
    Date
    2012
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Gao, X. and Wu, H. 2012. Significant roles of inherent fine included mineral particles in the emission of PM1-10during pulverised coal combustion, pp. 637-642.
    Source Title
    Cleaner Combustion and Sustainable World - Proceedings of the 7th International Symposium on Coal Combustion
    ISBN
    3540356061
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/5773
    Collection
    • Curtin Research Publications
    Abstract

    This study investigates the roles of inherent fine included mineral particles in coal in the formation of inorganic particulate matter (PM) during pulverized coal combustion at 1400°. A Western Australia sub-bituminous coal (Collie Coal) was used to prepare a raw coal sample of density-separated fraction (1.4-1.6 g/cm3) that is narrow-sized (63 -90 µm). The raw coal was also washed using dilute acid to prepare an acid washed coal sample that is free of organically-bound inorganic species. Computer-controlled scanning electron microscopy (CCSEM) analysis shows that mineral matter in the raw coal is of included nature, of which ~90% are fine mineral particles <10 m. Combustion of the coal samples produces substantial PM1-10 that accounts for 20.3 - 24.8% of total ash collected. The PM1-10samples contain abundant fine ash particles that are clearly originated from fine included mineral particles (e.g. quartz) inherent in the coal. The results suggest that liberation and transformation of fine included mineral particles in coal during combustion is a key mechanism responsible for PM1-10 formation under the combustion conditions. Experimental evidence further suggests that significant coalescence of fine included minerals within a burning coal particle can clearly take place to form large ash particles in the form of agglomerates. © Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2012.

    Related items

    Showing items related by title, author, creator and subject.

    • Emission of inorganic particulate matter during the combustion of biomass, biochar and Collie coal
      Gao, Xiangpeng (2011)
      Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
    • Roles of Inherent Fine Included Mineral Particles in the Emission of PM10 during Pulverized Coal Combustion
      Gao, Xiangpeng; Li, Yi; Garcia-Perez, M.; Wu, Hongwei (2012)
      A coal sample was prepared from a Western Australia sub-bituminous coal via density separation (1.4–1.6 g/cm3) and size separation (63–90 μm). The mineral matter in the coal is of included nature, of which ~90% are fine ...
    • Ash cenosphere formation, fragmentation and its contribution to particulate matter emission during solid fuels combustion
      Li, Yi (2012)
      Electricity generated from stationary coal-fired power stations has been playing an important role in powering the global economy and is projected to continue its key role in the foreseeable future. However, substantial ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.