Capillary trapping quantification in sandstones using NMR relaxometry
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017. American Geophysical Union. All Rights Reserved. Capillary trapping of a non-wetting phase arising from two-phase immiscible flow in sedimentary rocks is critical to many geoscience scenarios, including oil and gas recovery, aquifer recharge and, with increasing interest, carbon sequestration. Here we demonstrate the successful use of low field 1 H Nuclear Magnetic Resonance [NMR] to quantify capillary trapping; specifically we use transverse relaxation time [T 2 ] time measurements to measure both residual water [wetting phase] content and the surface-to-volume ratio distribution (which is proportional to pore size] of the void space occupied by this residual water. Critically we systematically confirm this relationship between T 2 and pore size by quantifying inter-pore magnetic field gradients due to magnetic susceptibility contrast, and demonstrate that our measurements at all water saturations are unaffected. Diffusion in such field gradients can potentially severely distort the T 2 -pore size relationship, rendering it unusable. Measurements are performed for nitrogen injection into a range of water-saturated sandstone plugs at reservoir conditions. Consistent with a water-wet system, water was preferentially displaced from larger pores while relatively little change was observed in the water occupying smaller pore spaces. The impact of cyclic wetting/non-wetting fluid injection was explored and indicated that such a regime increased non-wetting trapping efficiency by the sequential occupation of the most available larger pores by nitrogen. Finally the replacement of nitrogen by CO 2 was considered; this revealed that dissolution of paramagnetic minerals from the sandstone caused by its exposure to carbonic acid reduced the in situ bulk fluid T 2 relaxation time on a timescale comparable to our core flooding experiments. The implications of this for the T 2 -pore size relationship are discussed.
Related items
Showing items related by title, author, creator and subject.
-
Al Hinai, Adnan Saif Hamed; Rezaee, M. Reza (2015)Assessing shale formations is a major challenge in the oil and gas industry. The complexities are mainly due to the ultra-low permeability, the presence of a high percentage of clay, and the heterogeneity of the formation. ...
-
Khabbaz Saberi, Hamid (2009)The main focus of urban stormwater runoff disposal has traditionally been to provide structurally-sound drainage systems to carry runoff from many different surfaces without considering water quality at outfall. This has ...
-
Iglauer, Stefan; Paluszny, A.; Pentland, C.; Blunt, M. (2011)Carbon capture and storage (CCS), where CO2 is injected into geological formations, has been identified as an important way to reduce CO2 emissions to the atmosphere. While there are several aquifers worldwide into which ...