A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017, Central South University Press and Springer-Verlag GmbH Germany. A zeolitic imidazolate hybrid membrane (Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous a-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or othe r defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10 5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H 2 /CO 2 , H 2 /N 2 and H 2 /CH 4 , respectively, and a permeance of 17.37× 10 -6 mol/(m 2 ·s·Pa) for H 2 . The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H 2 separation.
Related items
Showing items related by title, author, creator and subject.
-
Khor, Ee Huey (2011)The accuracy of oil-in-water analysis for produced water is increasingly crucial as the regulations for disposal of this water are getting more stringent world wide. Currently, most of the oil producing countries has ...
-
Zhang, Y.; Sunarso, J.; Liu, Shaomin; Wang, R. (2013)Carbon dioxide (CO2) is a greenhouse gas found primarily as a main combustion product of fossil fuel as well as a component in natural gas, biogas and landfill gas. The interest to remove CO2 from those gas streams to ...
-
Sunarso, J.; Hashim, S.; Lin, Y.; Liu, Shaomin (2017)Helium demand is expected to double within the next two decades given its essential role as a cryogenic fluid and an inert gas in various technological applications whereas its production capacity only increases by 3% per ...