Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Experimental Validation of a Novel PI Speed Controller for AC Motor Drives With Improved Transient Performances

    Access Status
    Fulltext not available
    Authors
    Errouissi, R.
    Al-Durra, A.
    Muyeen, S.M.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Errouissi, R. and Al-Durra, A. and Muyeen, S. 2017. Experimental Validation of a Novel PI Speed Controller for AC Motor Drives With Improved Transient Performances. IEEE Transactions on Control Systems Technology.
    Source Title
    IEEE Transactions on Control Systems Technology
    DOI
    10.1109/TCST.2017.2707404
    ISSN
    1063-6536
    School
    Department of Electrical and Computer Engineering
    URI
    http://hdl.handle.net/20.500.11937/58172
    Collection
    • Curtin Research Publications
    Abstract

    A proportional-integral (PI) controller is the most frequently used control technique for adjustable speed-motor drives. The main advantage of a PI controller is its ability to ensure zero steady-state error under low-frequency disturbances and model uncertainties as long as the closed-loop system is stable. However, the transient performances, under a PI regulator, are highly dependent on the machine parameters, the external disturbances, and the input constraints. This brief proposes the design process of a novel PI speed controller that is capable of preserving almost the nominal transient performance under the parameter variation and external disturbances such as the load torque. The controller also suppresses the effect of input saturation that may occur because of the armature current limitation. Simulation and experimental tests are carried out to verify the validity of the proposed design process. The results revealed that the proposed PI controller is effective regarding nominal performance recovery and input constraints handling.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling and control strategies for extractive alcoholic fermentation: partial control approach
      Nandong, Jobrun (2010)
      The vast majority of chemical and bio-chemical process plants are normally characterized by large number of measurements and relatively small number of manipulated variables; these thin plants have more output than input ...
    • Modeling and control of non-ideally mixed bioreactors
      Liew, Emily Wan Teng (2011)
      Mixing plays a substantial role in determining the overall performance of a bioreactor. Well mixing in bioreactor, especially for ethanolic fermentation process is important for the homogenization of miscible and immiscible ...
    • Simulation and implementation of nonlinear control systems for mineral processes
      Kam, Kiew M. (2000)
      Differential geometric nonlinear control of a multiple stage evaporator system of the liquor burning facility associated with the Bayer process for alumina production at Alcoa Wagerup alumina refinery, Western Australia ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.