Show simple item record

dc.contributor.authorGuo, Y.
dc.contributor.authorWu, Yong Hong
dc.contributor.authorLai, S.
dc.contributor.authorCaccetta, Louis
dc.date.accessioned2017-11-24T05:24:20Z
dc.date.available2017-11-24T05:24:20Z
dc.date.created2017-11-24T04:48:51Z
dc.date.issued2017
dc.identifier.citationGuo, Y. and Wu, Y.H. and Lai, S. and Caccetta, L. 2017. The global weak solution for the shallow water wave model of moderate amplitude. Applicable Analysis. 96 (4): pp. 663-678.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/58173
dc.identifier.doi10.1080/00036811.2016.1151496
dc.description.abstract

© 2016 Taylor & Francis. In this paper, we firstly establish the existence theorem of the global weak solutions of the Cauchy problem for the shallow water wave model of moderate amplitude, then following the idea in Xin and Zhang’s work (see Xin and Zhang, 2002), we prove the uniqueness of global weak solutions using the localization analysis in the transport equation theory. Finally, several travelling wave solutions are derived.

dc.publisherTaylor & Francis
dc.titleThe global weak solution for the shallow water wave model of moderate amplitude
dc.typeJournal Article
dcterms.source.volume96
dcterms.source.number4
dcterms.source.startPage663
dcterms.source.endPage678
dcterms.source.issn0003-6811
dcterms.source.titleApplicable Analysis
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record