Importance of good sampling practice throughout the gold mine value chain
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM.The mining industry routinely collects samples to assist with decision making, whether for exploration, resource estimation, grade control, or plant design and balances. Poorly designed sampling protocols can result in elevated project risk by increasing variability. Critically, such variability produces both financial and intangible losses. Sample collection, preparation and assay or test work protocols that are optimised to suit the ore type, together with QAQC systems will reduce variability. Many gold deposits display a high natural variability, where the in situ variability can be enhanced by poor sampling practice to yield a high-nugget effect. In this case, specialised protocols are often required. Reporting codes require the Competent Person to consider the quality and implication of sampling programmes. Despite its importance, sampling often does not receive the attention it deserves. In this paper, the importance of good sampling practice is exemplified through a series of case studies, which show the many sampling issues that frequently go unrecognised or unaddressed, resulting in poor decisions and financial loss.
Showing items related by title, author, creator and subject.
-
Mathiassen, Svend; Jackson, J.; Punnett, L. (2014)Objectives:Observational work sampling is often used in occupational studies to assess categorical biomechanical exposures and occurrence of specific work t asks. The statistical performance of data obtained by work ...
-
Lorenz, M.; Abdi, N.; Scheckenbach, F.; Pflug, A.; Bülbül, A.; Catapano, A.; Agewall, S.; Ezhov, M.; Bots, M.; Kiechl, S.; Orth, A.; Norata, Giuseppe; Empana, J.; Lin, H.; McLachlan, S.; Bokemark, L.; Ronkainen, K.; Amato, M.; Schminke, U.; Srinivasan, S.; Lind, L.; Kato, A.; Dimitriadis, C.; Przewlocki, T.; Okazaki, S.; Stehouwer, C.; Lazarevic, T.; Willeit, P.; Yanez, D.; Steinmetz, H.; Sander, D.; Poppert, H.; Desvarieux, M.; Ikram, M.; Bevc, S.; Staub, D.; Sirtori, C.; Iglseder, B.; Engström, G.; Tripepi, G.; Beloqui, O.; Lee, M.; Friera, A.; Xie, W.; Grigore, L.; Plichart, M.; Su, T.; Robertson, C.; Schmidt, C.; Tuomainen, T.; Veglia, F.; Völzke, H.; Nijpels, G.; Jovanovic, A.; Willeit, J.; Sacco, R.; Franco, O.; Hojs, R.; Uthoff, H.; Hedblad, B.; Park, H.; Suarez, C.; Zhao, D.; Catapano, A.; Ducimetiere, P.; Chien, K.; Price, J.; Bergström, G.; Kauhanen, J.; Tremoli, E.; Dörr, M.; Berenson, G.; Papagianni, A.; Kablak-Ziembicka, A.; Kitagawa, K.; Dekker, J.; Stolic, R.; Polak, J.; Sitzer, M.; Bickel, H.; Rundek, T.; Hofman, A.; Ekart, R.; Frauchiger, B.; Castelnuovo, S.; Rosvall, M.; Zoccali, C.; Landecho, M.; Bae, J.; Gabriel, R.; Liu, J.; Baldassarre, D.; Kavousi, M. (2017)Background: For an individual participant data (IPD) meta-analysis, multiple datasets must be transformed in a consistent format, e.g. using uniform variable names. When large numbers of datasets have to be processed, ...
-
Kent, Peter; Boyle, E.; Keating, J.; Albert, A.; Hartvigsen, J. (2017)Objective: To quantify variability in the results of statistical analyses based on contingency tables and discuss the implications for the choice of sample size for studies that derive clinical prediction rules. Study ...