Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Importance of good sampling practice throughout the gold mine value chain

    Access Status
    Fulltext not available
    Authors
    Dominy, Simon
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dominy, S. 2016. Importance of good sampling practice throughout the gold mine value chain. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology. 125 (3): pp. 129-141.
    Source Title
    Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology
    DOI
    10.1179/1743286315Y.0000000028
    ISSN
    0371-7844
    School
    Western Australian School of Mines
    URI
    http://hdl.handle.net/20.500.11937/58225
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM.The mining industry routinely collects samples to assist with decision making, whether for exploration, resource estimation, grade control, or plant design and balances. Poorly designed sampling protocols can result in elevated project risk by increasing variability. Critically, such variability produces both financial and intangible losses. Sample collection, preparation and assay or test work protocols that are optimised to suit the ore type, together with QAQC systems will reduce variability. Many gold deposits display a high natural variability, where the in situ variability can be enhanced by poor sampling practice to yield a high-nugget effect. In this case, specialised protocols are often required. Reporting codes require the Competent Person to consider the quality and implication of sampling programmes. Despite its importance, sampling often does not receive the attention it deserves. In this paper, the importance of good sampling practice is exemplified through a series of case studies, which show the many sampling issues that frequently go unrecognised or unaddressed, resulting in poor decisions and financial loss.

    Related items

    Showing items related by title, author, creator and subject.

    • Statistical performance of observational work sampling for assessment of categorical exposure variables: A simulation approach illustrated using PATH data
      Mathiassen, Svend; Jackson, J.; Punnett, L. (2014)
      Objectives:Observational work sampling is often used in occupational studies to assess categorical biomechanical exposures and occurrence of specific work t asks. The statistical performance of data obtained by work ...
    • Automatic identification of variables in epidemiological datasets using logic regression
      Lorenz, M.; Abdi, N.; Scheckenbach, F.; Pflug, A.; Bülbül, A.; Catapano, A.; Agewall, S.; Ezhov, M.; Bots, M.; Kiechl, S.; Orth, A.; Norata, Giuseppe; Empana, J.; Lin, H.; McLachlan, S.; Bokemark, L.; Ronkainen, K.; Amato, M.; Schminke, U.; Srinivasan, S.; Lind, L.; Kato, A.; Dimitriadis, C.; Przewlocki, T.; Okazaki, S.; Stehouwer, C.; Lazarevic, T.; Willeit, P.; Yanez, D.; Steinmetz, H.; Sander, D.; Poppert, H.; Desvarieux, M.; Ikram, M.; Bevc, S.; Staub, D.; Sirtori, C.; Iglseder, B.; Engström, G.; Tripepi, G.; Beloqui, O.; Lee, M.; Friera, A.; Xie, W.; Grigore, L.; Plichart, M.; Su, T.; Robertson, C.; Schmidt, C.; Tuomainen, T.; Veglia, F.; Völzke, H.; Nijpels, G.; Jovanovic, A.; Willeit, J.; Sacco, R.; Franco, O.; Hojs, R.; Uthoff, H.; Hedblad, B.; Park, H.; Suarez, C.; Zhao, D.; Catapano, A.; Ducimetiere, P.; Chien, K.; Price, J.; Bergström, G.; Kauhanen, J.; Tremoli, E.; Dörr, M.; Berenson, G.; Papagianni, A.; Kablak-Ziembicka, A.; Kitagawa, K.; Dekker, J.; Stolic, R.; Polak, J.; Sitzer, M.; Bickel, H.; Rundek, T.; Hofman, A.; Ekart, R.; Frauchiger, B.; Castelnuovo, S.; Rosvall, M.; Zoccali, C.; Landecho, M.; Bae, J.; Gabriel, R.; Liu, J.; Baldassarre, D.; Kavousi, M. (2017)
      Background: For an individual participant data (IPD) meta-analysis, multiple datasets must be transformed in a consistent format, e.g. using uniform variable names. When large numbers of datasets have to be processed, ...
    • 400 or more participants needed for stable contingency table estimates of clinical prediction rule performance
      Kent, Peter; Boyle, E.; Keating, J.; Albert, A.; Hartvigsen, J. (2017)
      Objective: To quantify variability in the results of statistical analyses based on contingency tables and discuss the implications for the choice of sample size for studies that derive clinical prediction rules. Study ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.