Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The separate production of H 2S from the thermal reaction of hydrocarbons with magnesium sulfate and sulfur: Implications for thermal sulfate reduction

    Access Status
    Fulltext not available
    Authors
    Lu, H.
    Greenwood, Paul
    Chen, T.
    Liu, J.
    Peng, P.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lu, H. and Greenwood, P. and Chen, T. and Liu, J. and Peng, P. 2012. The separate production of H 2S from the thermal reaction of hydrocarbons with magnesium sulfate and sulfur: Implications for thermal sulfate reduction. Applied Geochemistry. 27 (1): pp. 96-105.
    Source Title
    Applied Geochemistry
    DOI
    10.1016/j.apgeochem.2011.09.007
    ISSN
    0883-2927
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/58229
    Collection
    • Curtin Research Publications
    Abstract

    The yields and stable C and H isotopic composition of gaseous products from the reactions of pure n-C 24 with (1) MgSO 4; and (2) elemental S in sealed Au-tubes at a series of temperatures over the range 220-600°C were monitored to better resolve the reaction mechanisms. Hydrogen sulfide formation from thermochemical sulfate reduction (TSR) of n-C 24 with MgSO 4 was initiated at 431°C, coincident with the evolution of C 2-C 5 hydrocarbons. Whereas the yields of H 2S increased progressively with pyrolysis temperature, the hydrocarbon yields decreased sharply above 490°C due to subsequent S consumption. Ethane and propane were initially very 13C depleted, but became progressively heavier with pyrolysis temperature and were more 13C enriched than the values of a control treatment conducted on just n-C 24 above 475°C. TSR of MgSO 4 also led to progressively higher concentrations of CO 2 showing relatively low d 13C values, possibly due to input of isotopically light CO 2 derived from gaseous hydrocarbon oxidation (e.g., more depleted CH 4).Sulfur reacted with n-C 24 to produce H 2S at the relatively low temperature of 250°C, the H 2S profile of the S treatment showed a consistent increase from 280°C after a sharp increase at 250°C, implicating S-hydrocarbon reactions as a potentially important source of subsurface H 2S accumulations. Sulfur produced only low amounts of CO 2 to 430°C, indicating that abstraction of the H source for H 2S occurred in the absence of C-C bond cleavages of the n-C 24 reactant. Higher yields of 13C depleted CO 2-S also showing a reactive preference for 12C bonds-and low MW hydrocarbons were evident from 431°C, although a moderate reduction (i.e., not as rapid as MgSO 4-TSR) of hydrocarbon levels and increase in d 13C values above 490°C was attributed to their direct S reaction. This demonstrates that S, as has previously been established for MgSO 4-TSR, has a reactive preference for hydrocarbons of high MW. The reaction of low MW hydrocarbons with the S reactant (i.e., S) or the S produced by SO 4 oxidation (i.e., MgSO 4), may also account for the elemental S (S 8, S 7, S 6 and S 4) and organic S products detected in the solvent extracted residue of both treatments. Field translation and validation of the molecular and stable isotopic trends identified in this laboratory study should help to resolve the relative contributions of different sources and competing processes to subsurface accumulations of H 2S. © 2011 Elsevier Ltd.

    Related items

    Showing items related by title, author, creator and subject.

    • The role of metal sulfates in thermochemical sulfate reduction (TSR) of hydrocarbons: Insight from the yields and stable carbon isotopes of gas products
      Lu, H.; Greenwood, Paul; Chen, T.; Liu, J.; Peng, P. (2011)
      The mechanism of thermochemical sulfate reduction (TSR) was investigated by separately heating n-C24 with three different sulfates (CaSO4, Na2SO4, MgSO4) in sealed gold tubes at 420°C and measuring the stable carbon isotope ...
    • Characterisation of aquatic natural organic matter by micro-scale sealed vessel pyrolysis
      Berwick, Lyndon (2009)
      The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...
    • Effect of Magnesium Salts on Growth and Production of Garlic (Allium sativum L.)
      Al-Barzinji, Ikbal M; Nayyef, Alaa (2014)
      A Randomized Complete Block Design (R.C.B.D.) experiment with three replicates was conducted to investigate the effect of foliar application of magnesium salts on growth, yield components and some inorganic minerals of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.