Global well-posedness and blow-up for the hartree equation
dc.contributor.author | YANG, L. | |
dc.contributor.author | LI, X. | |
dc.contributor.author | Wu, Yong Hong | |
dc.contributor.author | Caccetta, Louis | |
dc.date.accessioned | 2017-11-24T05:24:49Z | |
dc.date.available | 2017-11-24T05:24:49Z | |
dc.date.created | 2017-11-24T04:48:51Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | YANG, L. and LI, X. and Wu, Y.H. and Caccetta, L. 2017. Global well-posedness and blow-up for the hartree equation. Acta Mathematica Scientia. 37 (4): pp. 941-948. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/58257 | |
dc.identifier.doi | 10.1016/S0252-9602(17)30049-8 | |
dc.description.abstract |
© 2017 Wuhan Institute of Physics and Mathematics For 2 < ? < min {4,n}, we consider the focusing Hartree equation iu t +?u+(|x| -? *|u| 2 )u=0, x ? R n .Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - ? Q + Q = (|x| -? *|Q| 2 )Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0.1) ifM[u] 1-s c E[u] s c < M[Q] 1-s c E[Q] s c (s c =[Formula presented]). In this paper, we consider the complementary caseM[u] 1-s c E[u] s c = M[Q] 1-s c E[Q] s c and obtain a criteria on blow-up and global existence for the Hartree equation (0.1). | |
dc.publisher | Elsevier BV | |
dc.title | Global well-posedness and blow-up for the hartree equation | |
dc.type | Journal Article | |
dcterms.source.volume | 37 | |
dcterms.source.number | 4 | |
dcterms.source.startPage | 941 | |
dcterms.source.endPage | 948 | |
dcterms.source.issn | 0252-9602 | |
dcterms.source.title | Acta Mathematica Scientia | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |