Trace Elements Release and Particulate Matter Emission during the Combustion of Char and Volatiles from in Situ Biosolid Fast Pyrolysis
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 American Chemical Society.This paper presents a systematic study on the emission of trace elements (e.g., As, Cu, Cr, Ni, V, Co, Cd, and Pb) during the combustion of char, volatiles, and biosolid at 1300 °C using a two-stage pyrolysis/combustion reactor system. Over 50% As, Cd, and Pb in biosolid are released with volatiles during fast pyrolysis at 800-1000 °C, while other elements are mostly retained in char. During biosolid combustion, PM10 consists of mainly major elements and the contribution of trace elements is <0.5 wt %. Particulate matter (PM) produced from the combustion of volatiles produced in situ from biosolid fast pyrolysis at 800-1000 °C is dominantly PM1, contains only volatile elements (As, Cd, and Pb), and has a unimodal distribution with a fine mode diameter of 0.043 µm. Char combustion produces both PM1 and PM1-10, with the PM having a bimodal distribution (a fine mode at 0.043 µm and a course mode at 6.8 µm). It is also found that As, Cd, and Pb only contribute to PM1 emission even during char combustion. While Ni, Co, Cu, and part of V are responsible for PM1-10 emission, most Cr and some V presented in char also contribute to PM1 emission during char combustion. Significant differences are also observed in the PM between direct biosolid combustion and the sum of PM from char and volatile combustion. The results suggest that direct biosolid combustion may have produced substantially different char and volatiles, which may have experienced significant interactions during combustion.
Related items
Showing items related by title, author, creator and subject.
-
Gao, Xiangpeng (2011)Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
-
Chen, X.; Liaw, Sui Boon; Wu, Hongwei (2018)© 2018 The Combustion Institute This study reports the significant effect of volatile–char interactions on the emission of particulate matter (PM) during the combustion of biosolid chars in drop-tube furnace at 1300 °C ...
-
Chen, Xujun; Liaw, Sui Boon; Wu, Hongwei (2017)Abstract A three-stage pyrolysis/combustion reactor was used to demonstrate the importance of volatile–char interactions in inorganic particulate matter (PM) emission from the combustion of biosolid volatiles. It consists ...