Show simple item record

dc.contributor.authorSun, F.
dc.contributor.authorLiu, Lishan
dc.contributor.authorWu, Yong Hong
dc.date.accessioned2017-11-28T06:36:46Z
dc.date.available2017-11-28T06:36:46Z
dc.date.created2017-11-28T06:21:50Z
dc.date.issued2017
dc.identifier.citationSun, F. and Liu, L. and Wu, Y.H. 2017. Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition. Applied Mathematics Letters. 73: pp. 128-135.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/58738
dc.identifier.doi10.1016/j.aml.2017.05.001
dc.description.abstract

By introducing a subspace of H 2 (O) with constraints ?u?n| ?O =0 and ? O udx=0 and using the Fountain Theorem, we obtain the existence of infinitely many sign-changing high energy solutions for a biharmonic equations with p-Laplacian and Neumann boundary condition.

dc.publisherElsevier
dc.titleInfinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition
dc.typeJournal Article
dcterms.source.volume73
dcterms.source.startPage128
dcterms.source.endPage135
dcterms.source.issn0893-9659
dcterms.source.titleApplied Mathematics Letters
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record