Comparative assessment of phototherapy protocols for reduction of oxidative stress in partially transected spinal cord slices undergoing secondary degeneration
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
Funding and Sponsorship
Collection
Abstract
Background: Red/near-infrared light therapy (R/NIR-LT) has been developed as a treatment for a range of conditions, including injury to the central nervous system (CNS). However, clinical trials have reported variable or sub-optimal outcomes, possibly because there are few optimized treatment protocols for the different target tissues. Moreover, the low absolute, and wavelength dependent, transmission of light by tissues overlying the target site make accurate dosing problematic. Results: In order to optimize light therapy treatment parameters, we adapted a mouse spinal cord organotypic culture model to the rat, and characterized myelination and oxidative stress following a partial transection injury. The ex vivo model allows a more accurate assessment of the relative effect of different illumination wavelengths (adjusted for equal quantal intensity) on the target tissue. Using this model, we assessed oxidative stress following treatment with four different wavelengths of light: 450 nm (blue); 510 nm (green); 660 nm (red) or 860 nm (infrared) at three different intensities: 1.93 × 1016 (low); 3.85 × 1016 (intermediate) and 7.70 × 1016 (high) photons/cm2/s. We demonstrate that the most effective of the tested wavelengths to reduce immunoreactivity of the oxidative stress indicator 3-nitrotyrosine (3NT) was 660 nm. 860 nm also provided beneficial effects at all tested intensities, significantly reducing oxidative stress levels relative to control (p ≤ 0.05). Conclusions: Our results indicate that R/NIR-LT is an effective antioxidant therapy, and indicate that effective wavelengths and ranges of intensities of treatment can be adapted for a variety of CNS injuries and conditions, depending upon the transmission properties of the tissue to be treated.
Related items
Showing items related by title, author, creator and subject.
-
Giacci, M.; Hart, N.; Hartz, R.; Harvey, A.; Hodgetts, S.; Fitzgerald, Melinda (2015)Red/near-infrared light therapy (R/NIR-LT), delivered by laser or light emitting diode (LED), improves functional and morphological outcomes in a range of central nervous system injuries in vivo, possibly by reducing ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Szymanski, C.R.; Chiha, W.; Morellini, N.; Cummins, N.; Bartlett, C.A.; Doig, R.L.O.; Savigni, D.L.; Payne, S.C.; Harvey, A.R.; Dunlop, S.A.; Fitzgerald, Melinda (2013)Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative ...