Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 The Authors. Meteoritics & Planetary Science published by Wiley Periodicals, Inc. on behalf of The Meteoritical Society. We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 µT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.
Related items
Showing items related by title, author, creator and subject.
-
Emmerton, S.; Muxworthy, A.; Hezel, D.; Bland, Philip (2011)We have conducted a detailed magnetic study on 45 chondrules from two carbonaceous chondrites of the CV type: (1) Mokoia and (2) Allende. Allende has been previously extensively studied and is thought to have a high ...
-
Bland, Phil; Howard, L.; Prior, D.; Wheeler, J.; Hough, R.; Dyl, Kathryn (2011)Rock fabrics – the preferred orientation of grains – provide a window into the history of rock formation, deformation and compaction. Chondritic meteorites are among the oldest materials in the Solar System1 and their ...
-
Forman, Lucy; Bland, Phil; Timms, Nicholas; Collins, G.; Davison, T.; Ciesla, F.; Benedix, Gretchen; Daly, L.; Trimby, P.; Yang, L.; Ringer, S. (2016)The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1—essentially unshocked—using the classification scheme of Stöffler et al. (1991), however recent ...