On group-wise ℓp regularization: Theory and efficient algorithms
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Following advances in compressed sensing and high-dimensional statistics, many pattern recognition methods have been developed with ℓ1 regularization, which promotes sparse solutions. In this work, we instead advocate the use of ℓp (2 ≥ p > 1) regularization in a group setting which provides a better trade-off between sparsity and algorithmic stability. We focus on the simplest case with squared loss, which is known as group bridge regression. On the theoretical side, we prove that group bridge regression is uniformly stable and thus generalizes, which is an important property of a learning method. On the computational side, we make group bridge regression more practically attractive by deriving provably convergent and computationally efficient optimization algorithms. We show that there are at least several values of p over (1,2) at which the iterative update is analytical, thus it is even suitable for large-scale settings. We demonstrate the clear advantage of group bridge regression with the proposed algorithms over other competitive alternatives on several datasets. As ℓp-regularization allows one to achieve flexibility in sparseness/denseness of the solution, we hope that the algorithms will be useful for future applications of this regularization.
Related items
Showing items related by title, author, creator and subject.
-
Pham, DucSon (2015)Following advances in compressed sensing and high-dimensional statistics, many pattern recognition methods have been developed with l1 regularization, which promotes sparse solutions. In this work, we instead advocate ...
-
Ding, Z.; Li, Jun ; Hao, Hong (2019)Structural damage identification can be considered as an optimization problem, by defining an appropriate objective function relevant to structural parameters to be identified with optimization techniques. This paper ...
-
Nguyen, Nam; Liu, Wan-Quan; Venkatesh, Svetha (2008)Two dimensional linear discriminant analysis (2DLDA) has received much interest in recent years. However, 2DLDA could make pairwise distances between any two classes become significantly unbalanced, which may affect its ...