Metal Hydrides as Energy Storage for Concentrated Solar Thermal Applications
Access Status
Open access
Authors
Javadian-Deylami, Seyd Payam
Date
2017Supervisor
Prof. Craig Buckley
Type
Thesis
Award
PhD
Metadata
Show full item recordFaculty
Science and Engineering
School
Department of Applied Physics
Collection
Abstract
Hydrogen storage properties of LiBH4 may be changed by interaction with other complex hydrides due to an intimate interaction between the respective alkaline metals and boron which facilitate a relatively larger hydrogen storage capacity. The cyclic stability of the following binary complex hydride systems LiBH4-Ca(BH4)2, LiBH4-NaBH4 and LiBH4-NaAlH4 shows significant reversibility and due to their relative high gravimetric H2 storage capacity and specific heat storage capacity, they may potentially act as heat storage materials.
Related items
Showing items related by title, author, creator and subject.
-
Sofianos, Veronica; Sheppard, Drew; Ianni, E.; Humphries, Terry; Rowles, Matthew; Liu, S.; Buckley, C. (2017)A novel approach for confining LiBH4 within a porous aluminium scaffold was applied in order to enhance its hydrogen storage properties, relative to conventional techniques for confining complex hydrides. The porous ...
-
Javadian, P.; Gharibdoust, S.; Li, H.; Sheppard, Drew; Buckley, C.; Jensen, T. (2017)© 2017 American Chemical Society. The hydrogen storage properties of eutectic melting 0.68LiBH 4 -0.32Ca(BH 4 ) 2 (LiCa) as bulk and nanoconfined into a high surface area, S BET = 2421 ± 189 m 2 /g, carbon aerogel ...
-
Javadian, P.; Sheppard, Drew; Buckley, Craig; Jensen, T. (2015)In this study a eutectic melting composite of 0.62LiBH4-0.38NaBH4 has been infiltrated in two nanoporous resorcinol formaldehyde carbon aerogel scaffolds with similar pore sizes (37 and 38 nm) but different BET surface ...