Decay of enteric microorganisms in biosolids-amended soil under wheat (Triticum aestivum) cultivation
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
There is a growing need for better assessment of health risks associated with land-applied biosolids. This study investigated in-situ decay of seeded human adenovirus (HAdV), Salmonella enterica, Escherichia coli, and bacteriophage (MS2) in biosolids-amended soil under wheat cultivation. The biosolids seeded with microorganisms were placed in decay chambers which were then placed in the topsoil (10 cm depth) at three different sites. Sites were selected in arid wheat-growing regions of Australia with loamy-sand soil type (Western Australia) and sandy soil (South Australia). Seeded E. coli and S. enterica had a relatively short decay time (T90 = 4–56 days) in biosolids-amended soil compared to un-amended soil (T90 = 8–83 days). The decreasing soil moisture over the wheat-growing season significantly (P < 0.05) influenced survival time of both bacteria and MS2 at Western Australia (Moora) and South Australia (Mt Compass) sites, particularly in the un-amended soils. Increasing soil temperature also significantly (P < 0.05) influenced the decay of MS2 at these sites. In this study, no notable decline in HAdV numbers (PCR detectable units) was observed in both biosolids-amended and the un-amended soils at all three sites. The HAdV decay time (T90 ≥ 180 days) in biosolids-amended and un-amended soils was significantly higher than MS2 (T90 = 22–108 days). The results of this study suggest that adenovirus could survive for a longer period of time (>180 days) during the winter in biosolids-amended soil. The stability of adenovirus suggests that consideration towards biosolids amendment frequency, time, rates and appropriate withholding periods are necessary for risk mitigation.
Related items
Showing items related by title, author, creator and subject.
-
Schwarz, Karen Rosemary (2012)A research project was undertaken to study the effect of biosolids on the decay times of enteric pathogens in the soil. This is the most comprehensive study in Australia where the persistence of enteric microorganisms in ...
-
Schwarz, Karen; Sidhu, J.; Pritchard, Deborah; Toze, S.; Li, Y. (2010)There is little scientific data available on the survival patterns of pathogenic microorganisms introduced into the soil through the broad acre application of biosolids. This study was conducted to investigate the decay ...
-
Pritchard, Deborah Leeanne (2005)The annual production of biosolids in the Perth region during the period of this study was approximately 13,800 t dry solids (DS), being supplied by three major wastewater treatment plants. Of this, 70% was typically used ...