Stormwater solids removal characteristics of a catch basin insert using geotextile
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180µm (P1; D 50 :106µm) and 0-300µm (P2; D 50 :150µm). The results revealed that the desired stormwater TSS concentration ( & #60;30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m 2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10 -5 m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability.
Related items
Showing items related by title, author, creator and subject.
-
Alam, M.; Anwar, Faisal; Heitz, Anna; Sarker, D. (2018)Stormwater runoff transports contaminants, including gross pollutants (GPs) accumulated on surfaces to nearby receiving water bodies. These may clog storm drainage systems, seal side entry pits and increase dissolved ...
-
Anwar, Faisal ; Chen, Weizhuang; Alam, Md Zahanggir (2020)The urban stormwater runoff carries significant amount of sediments and nutrients and discharges into the nearby water bodies. Among the best management practices (BMPs), catch basin insert (CBI) is a promising technology ...
-
Alam, Md Zahanggir (2018)This research investigates the hydraulics of catch basin insert (CBI) for treating stormwater at source. Field and laboratory investigations checked the solid removal capacity of geotextiles in CBI. Laboratory experiments ...