Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effectiveness of using pipe-in-pipe (PIP) concept to reduce vortex-induced vibrations (VIV): Three-dimensional two-way FSI analysis

    Access Status
    Fulltext not available
    Authors
    Matin Nikoo, H.
    Bi, Kaiming
    Hao, H.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Matin Nikoo, H. and Bi, K. and Hao, H. 2018. Effectiveness of using pipe-in-pipe (PIP) concept to reduce vortex-induced vibrations (VIV): Three-dimensional two-way FSI analysis. Ocean Engineering. 148: pp. 263-276.
    Source Title
    Ocean Engineering
    DOI
    10.1016/j.oceaneng.2017.11.040
    ISSN
    0029-8018
    School
    Department of Civil Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DE150100195
    URI
    http://hdl.handle.net/20.500.11937/59298
    Collection
    • Curtin Research Publications
    Abstract

    Pipe-in-pipe (PIP) systems have been increasingly used in offshore applications because of their favourable thermal insulation capacity. Very recently, the conventional PIP system was slightly revised by using carefully designed springs and dashpots to connect the inner and outer pipes. This revised PIP system can be considered as a structure-Tuned Mass Damper (TMD) system. It therefore has the potential to mitigate the offshore structural vibrations induced by various sources such as earthquake excitation and/or vortex shedding. This paper carries out three-dimensional (3D) numerical simulations to investigate the effectiveness of the proposed method. The cross-flow oscillation of the conventional and optimized PIP systems are numerically investigated by developing a two-way coupled Fluid-Structure Interaction (FSI) framework for computational fluid dynamics (CFD) analysis. The developed FSI model is validated with the available experimental and numerical benchmark data on a single cylinder. This validated model is then extended to the PIP system to study its efficiency for Vortex-Induced Vibration (VIV) suppression. Numerical results show that the optimized PIP system can noticeably reduce VIV.

    Related items

    Showing items related by title, author, creator and subject.

    • Using pipe-in-pipe systems for subsea pipeline vibration control
      Bi, Kaiming; Hao, Hao (2016)
      Pipe-in-pipe (PIP) systems are increasingly used in subsea pipeline applications due to their favourable thermal insulation capacity. Pipe-in-pipe systems consist of concentric inner and outer pipes, the inner pipe carries ...
    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    • Modeling the transient response of the thermosyphon heat pipes
      Parand, Reza; Rashidian, B.; Ataei, A.; Shakiby, K. (2009)
      This study presents a theoretical investigation of the thermosyphon heat pipe behavior in transient regime. The advantage of the transient lumped model will be taken to simulate the response of the heat pipe. The transient ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.