Sea-level scenarios for evaluating coastal impacts
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Global-mean sea-level rise will drive impacts and adaptation needs around the world's coasts over the 21st century and beyond. A key element in assessing these issues is the development of scenarios (or plausible futures) of local relative sea-level rise to support impact assessment and adaptation planning. This requires combining a number of different but uncertain components of sea level which can be linked to climatic and non-climatic (i.e., uplift/subsidence of coastal land) factors. A major concern remains about the possibility of significant contributions from the major Greenland and Antarctic ice sheets and this must be factored into the assessments, despite the uncertainty. This paper reviews the different mechanisms which contribute to sea-level change and considers a methodology for combining the available data to create relative (or local) sea-level rise scenarios suitable for impact and adaptation assessments across a range of sophistication of analysis. The methods that are developed are pragmatic and consider the different needs of impact assessment, adaptation planning, and long-term decision making. This includes the requirements of strategic decision makers who rightly focus on low probability but high consequence changes and their consequences. Hence plausible high end sea-level rise scenarios beyond the conventional Intergovernmental Panel on Climate Change (IPCC) range and which take into account evidence beyond that from the current generation of climate
Related items
Showing items related by title, author, creator and subject.
-
Warrick, Richard; Ye, W.; Hay, J.; Cheatham, C. (2005)In terms of evaluating possible adaptations to climate change, one problem faced by decisionmakers is how to separate the risks from present, natural climatic variations and extremes from those associated with future ...
-
Barnuud, Nyamdorj Namjildorj (2012)Global climate model simulations indicate 1.3°C to 1.8°C increase in the Earth’s average temperature by middle of this century above the 1980 to 1999 average. The magnitude and rate of change of this projected warming is ...
-
Baur, O.; Kuhn, Michael; Featherstone, Will (2013)Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, ...