Wettability of nano-treated calcite/CO2/brine systems: Implication for enhanced CO2 storage potential
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO 2 -storage applications where the CO 2 -wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (?) measurements for CO 2 /brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO 2 wt%) and the period of nano-treatment on the wettability of calcite is examined. We find that nano-treatment alters the wettability significantly i.e. intermediate-wet calcite turns strongly water-wet after treatment (e.g. at 20 MPa and 50 °C, ? = 64° for intermediate-wet calcite, and ? = 28° for nano-treated calcite). Consequently, pre-injection of nanofluids will significantly enhanced the storage potential. It was also found that the permanent shift in wettability after nano-treatment is a function of treatment conditions including temperature, pressure, and treatment duration time and that surfaces treated under high pressure and low temperature yield better wettability alteration efficiency. We point out that the change in wettability is attributed to the changes in surface properties of the nano-treated sample. The results of the study thus depict that nanoparticles can significantly enhance storage potential and de-risk storage projects.
Related items
Showing items related by title, author, creator and subject.
-
Al-Anssari, S.; Nwidee, L.; Arif, M.; Wang, Shaobin; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2017)Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery ...
-
Al-Anssari, S.; Arif, M.; Wang, Shaobin; Barifcani, Ahmed; Lebedev, M.; Iglauer, Stefan (2018)© 2017 Elsevier Ltd Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application ...
-
Al-Anssari, S.; Wang, S.; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2017)Nanofluid treatment of oil reservoirs is being developed to enhance oil recovery and increase residual trapping capacities of CO 2 at the reservoir scale. Recent studies have demonstrated good potential for silica ...