Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress–egress approach
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Proton-conducting perovskite oxides are excellent electrolyte materials for SOFCs that may improve power density at reduced temperatures and increase fuel efficiency, thus encouraging the widespread implementation of this attractive technology. The main challenges in the application of these oxides in SOFCs are difficult sintering and insufficient conductivity in real cells. In this study, we propose a novel method to significantly enhance the performance of a yttrium-doped barium cerate proton conductor as an electrolyte for SOFCs through a Pd ingress–egress approach to the development of BaCe0.8Y0.1Pd0.1O3-d (BCYP10). The capability of the Pd egress from the BCYP10 perovskite lattice is demonstrated by H2-TPR, XRD, EDX mapping of STEM and XPS. Significant improvement in the sinterability is observed after the introduction of Pd due to the increased ionic conductivity and the sintering aid effect of egressed Pd. The formation of a B-site cation defect structure after Pd egress and the consequent modification of perovskite grain boundaries with Pd nanoparticles leads to a proton conductivity of BCYP10 that is approximately 3 times higher than that of BCY under a reducing atmosphere. A single cell with a thin film BCYP10 electrolyte reaches a peak power density as high as 645 mA cm-2 at 700 °C.
Related items
Showing items related by title, author, creator and subject.
-
He, Y.; Zhang, H.; Li, Y.; Wang, J.; Ma, L.; Zhang, W.; Liu, Jian (2015)© 2015 The Royal Society of Chemistry. Proton carriers are essential for highly conductive polymer electrolyte membranes. Herein, a series of nanofibrous composite membranes (NFCMs) are prepared by facilely incorporating ...
-
Liu, Yu; Tade, Moses; Shao, Zongping (2013)Solid oxide fuel cells (SOFCs) have aroused worldwide attention for their high conversion efficiency, zero emissions, and fuel flexibility. Generally, a SOFC consists of an anode, a cathode and a electrolyte. The electrolytes ...
-
Guo, Y.; Ran, R.; Shao, Zongping (2010)A proton-conducting solid oxide fuel cells with a dual-layer electrolyte, constructed of a highly protonic conductive BaCe0.8Y 0.2O3-d (BCY) electrolyte and chemically stable BaZr0.4Ce0.4Y0.2O3-d (BZCY4) electrolyte, was ...