Show simple item record

dc.contributor.authorWang, G.
dc.contributor.authorYu, Changjun
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T10:49:43Z
dc.date.available2017-01-30T10:49:43Z
dc.date.created2013-11-11T20:00:32Z
dc.date.issued2013
dc.identifier.citationWang, G.Q. and Yu, C.J. and Teo, K.L. 2013. A full-Newton step feasible interior-point algorithm for P*(k)-linear complementarity problems. Journal of Global Optimization. 59 (1): pp. 81-99.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/5978
dc.identifier.doi10.1007/s10898-013-0090-x
dc.description.abstract

In this paper, a full-Newton step feasible interior-point algorithm is proposed for solving P*(κ) -linear complementarity problems. We prove that the full-Newton step to the central path is local quadratically convergent and the proposed algorithm has polynomial iteration complexity, namely, O ((1+4κ) √nlogn/ε), which matches the currently best known iteration bound for P*(κ)-linear complementarity problems. Some preliminary numerical results are provided to demonstrate the computational performance of the proposed algorithm.

dc.publisherSpringer
dc.subjectpolynomial complexity
dc.subjectP*(κ)-matrix
dc.subjectinterior-point methods
dc.subjectlinear complementarity problems
dc.titleA full-Newton step feasible interior-point algorithm for P*(k)-linear complementarity problems
dc.typeJournal Article
dcterms.source.volume2013
dcterms.source.issn09255001
dcterms.source.titleJournal of Global Optimization
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record