Low-cost, 4-system, precise GNSS positioning: A GPS, Galileo, BDS and QZSS ionosphere-weighted RTK analysis
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This is an author-created, un-copy edited version of an article accepted for publication in Measurement Science and Technology. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6501/aa92eb
Collection
Abstract
With the combination of emerging GNSSs, single-frequency (SF) precise RTK positioning becomes possible. In this contribution we evaluate such low-cost ublox receiver and antenna performance when combining real data of four CDMA systems, namely L1 GPS, E1 Galileo, L1 QZSS, and B1 BDS. Comparisons are made to more expensive dual-frequency (DF) GPS receivers and antennas. The formal and empirical ambiguity success rates and positioning precisions will first be evaluated while making use of L1+E1, so as to investigate whether instantaneous SF RTK is possible without the need of B1 BDS or L1 QZSS. This is followed by an analysis of the SF 4-system model performance when the residual ionosphere can be ignored and modeled as a function of the baseline length, respectively. The analyses are conducted for a location in Dunedin, New Zealand, and compared to Perth, Australia with the better visibility of BDS and QZSS. The results indicate that successful instantaneous and precise RTK positioning is feasible while using L1 GPS and E1 Galileo data, and that the SF 4-system model is competitive to DF GPS even when residual ionospheric delays are present. We finally demonstrate that when the impact from the ionosphere increases and more than one epoch is needed for successful ambiguity resolution, the SF 4-system model performance can still remain competitive with the DF GPS receivers. This is particularly true in Perth with more satellites and when higher than customary elevation cut-off angles need to be used to avoid low-elevation multipath.
Related items
Showing items related by title, author, creator and subject.
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...
-
Odolinski, R.; Teunissen, Peter; Odijk, Dennis (2014)In this contribution we will focus on long single-baseline real-time kinematic (RTK) positioning when combining the American GPS, Chinese BDS, European Galileo and Japanese QZSS. The main objective is to demonstrate the ...
-
Deo, Manoj; El-Mowafy, Ahmed (2017)A Precise Point Positioning (PPP) method is presented that uses raw triple-frequency GPS measurements augmented with a regional ionospheric model (RIM) for faster solution convergence. The proposed method has two ...