Experimental investigation on variation of physical properties of coal particles subjected to microwave irradiation
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.
Related items
Showing items related by title, author, creator and subject.
-
Arif, M.; Barifcani, Ahmed; Zubair, T.; Lebedev, Maxim; Iglauer, Stefan (2016)The underground geological CO 2 storage into oil and gas reservoirs and/or saline aquifers is a promosing technique to reduce anthropogenic greenhouse gas emissions which thus ensures clean environment. CO 2 can also be ...
-
Zou, J.; Rezaee, Reza (2016)Adsorbed gas cannot be neglected in the evaluation of coalbed methane and shale gas since a significant proportion of gas is stored in the form of adsorbed gas. Adsorbed methane of coal and shale has been widely studied ...
-
Zou, Jie; Rezaee, M. Reza; Yuan, Yujie (2018)© 2018 Elsevier B.V. Shale gas is becoming increasingly important to mitigate the energy crisis of the world. Understanding the mechanisms of gas transport in shale matrix is crucial for development strategies. In this ...