A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn2O4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn2O4 modified membrane enhanced the ozone self-decompose to generate O2− and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H2O2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, T.; Li, W.; Croué, Jean-Philippe (2011)The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl ...
-
Zhang, T.; Li, W.; Croue, Jean-Philippe (2012)Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate ...
-
Wang, Y.; Chen, L.; Cao, H.; Chi, Z.; Chen, C.; Duan, Xiaoguang; Xie, Y.; Qi, F.; Song, W.; Liu, J.; Wang, Shaobin (2019)La-based perovskites are catalytically active owing to the oxygen vacancies, redox metal centers of B sites and surface hydroxyl groups. Nevertheless, the insights into these active centers on environmental catalysis are ...