Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of baffles on performance of fluid catalytic cracking riser

    Access Status
    Fulltext not available
    Authors
    Shah, Milin
    Pareek, Vishnu
    Evans, G.
    Utikar, Ranjeet
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shah, M. and Pareek, V. and Evans, G. and Utikar, R. 2017. Effect of baffles on performance of fluid catalytic cracking riser. Particuology. 38: pp. 18-30. .
    Source Title
    Particuology
    DOI
    10.1016/j.partic.2017.05.012
    ISSN
    1674-2001
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/60645
    Collection
    • Curtin Research Publications
    Abstract

    Increasing demand of automobile fuel and a need to process heavier crude oil makes it imperative to find improvements to the design of existing fluid catalytic cracking (FCC) units. Several modifications to the design of the riser section of FCC units have been suggested in previous studies including: improved feed nozzle designs, multiple nozzle configurations, internal baffles, and novel two-stage-riser systems. In this study, we investigate the effects of baffles on the performance of FCC risers using computational fluid dynamics simulations. In this study, predictions from a basis model (without baffles) are compared with those from four different configurations including: (i) 5-cm baffles at 5-m spacing, (ii) 7.5-cm baffles at 5-m spacing, (iii) 10-cm baffles with 5-m spacing, (iv) 10-cm baffles at 2.5-m spacing, and (v) 10-cm baffles at 1-m spacing. The baffles force the catalyst away from walls toward the center of the riser, enhancing the radial dispersion of the catalyst and the heat transfer inside the riser. The use of longer baffles and smaller spacings further increases the dispersion, yielding more homogeneous radial profiles. The changes in the radial dispersion result in variations in the conversion, yields, and pressure drops. The baffles increase conversion of vacuum gas oil (VGO) and the yield of gasoline. However, the simulations showed that longer baffles and a larger number of baffles did not always give a higher yield or higher conversion. Among the simulated configurations, the 5-cm baffles at 5-m spacing gave the highest conversion of VGO, whereas the 10-cm baffles at 1-m spacing resulted in the highest yield of the gasoline. Thus, rational optimization of baffle configurations is required to achieve optimal performance.

    Related items

    Showing items related by title, author, creator and subject.

    • CFD study: Effect of pulsating flow on gas-solid hydrodynamics in FCC riser
      Shah, Milin; Utikar, Ranjeet; Pareek, Vishnu (2016)
      Gas-solid flow in a fluid catalytic cracking (FCC) riser exhibits poor mixing in the form of a core-annulus flow pattern and a dense bottom/dilute top distribution of solids. To enhance gas-solid mixing, studies on dense ...
    • Computational fluid dynamic modelling of FCC riser: A review
      Shah, Milin; Utikar, Ranjeet; Pareek, Vishnu; Evans, G.; Joshi, J. (2016)
      Design and scale-up of fluid catalytic cracking (FCC) riser is still largely empirical, owing to limited understanding of inherent multiphase flow in this equipment. The multiphase flow of FCC riser has therefore been ...
    • Coarse grid simulation of gas-solid flows in riser
      Shah, Milinkumar T. (2011)
      Gas-solid risers have been extensively used as multiphase reactors in circulating fluidized bed (CFB) system such as fluid catalytic cracking (FCC) and Circulating fluidized bed combustion (CFBC). In FCC, a riser facilitates ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.