Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: Theory and numerical simulations - part 1: P-wave perpendicular to the fracture plane

    Access Status
    Fulltext not available
    Authors
    Guo, J.
    Rubino, J.
    Barbosa, N.
    Glubokovskikh, Stanislav
    Gurevich, Boris
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Guo, J. and Rubino, J. and Barbosa, N. and Glubokovskikh, S. and Gurevich, B. 2018. Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: Theory and numerical simulations - part 1: P-wave perpendicular to the fracture plane. Geophysics. 83 (1): pp. WA49-WA62.
    Source Title
    Geophysics
    DOI
    10.1190/GEO2017-0065.1
    ISSN
    0016-8033
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/61490
    Collection
    • Curtin Research Publications
    Abstract

    When a seismic wave travels through a fluid-saturated porous reservoir containing aligned fractures, it induces oscillatory fluid flow between the fractures and the embedding background medium. Although there are numerous theoretical models for quantifying the associated seismic attenuation and velocity dispersion, they rely on certain assumptions, such as infinitesimal fracture thickness and dilute fracture concentration, which rarely hold in real reservoirs. The objective of this work is to overcome some of these limitations and, therefore, improve the applicability of the available theoretical models. To do so, we extend existing models to the finite fracture thickness case for P-waves propagating perpendicular to the fracture plane using the so-called branching function approach. We consider three types of fractures, namely, periodically and randomly spaced planar fractures, as well as penny-shaped cracks. The extended unified model is then tested by comparing with corresponding numerical simulations based on Biot's theory of poroelasticity. We consider two cases of 2D rock samples with aligned elliptical fractures, one with low fracture density and the other with high fracture density. The results indicate that the influence of the finite fracture thickness on seismic dispersion and attenuation is small at low frequencies when the fluid pressure has enough time to equilibrate between the fractures and background medium. However, this effect is significant at high frequencies w hen there is not sufficient time for the fluid pressure equilibration. In addition, the theoretical predictions of the pennyshaped crack model are found to match the numerical simulation results very well, even under relatively high fracture density. Analyses of stress distributions suggest that the small discrepancies found between theoretical predictions and numerical simulations are probably due to fracture interactions. In a companion paper, we will extend the analysis for considering the full stiffness matrix and anisotropic properties of such rocks.

    Related items

    Showing items related by title, author, creator and subject.

    • Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: Theory and numerical simulations - part 2: Frequency-dependent anisotropy
      Guo, J.; Rubino, J.; Barbosa, N.; Glubokovskikh, Stanislav; Gurevich, Boris (2018)
      Numerous theoretical models have been proposed for computing seismic wave dispersion and attenuation in rocks with aligned fractures due to wave-induced fluid flow between the fractures and the embedding background. ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    • Effects of Finite Fracture Thicknaess on Seismic Dispersion and Attenuation in Saturated Rocks with Aligned Penny-Shaped Cracks: Theory versus Numerical Simulation
      Guo, J.; Rubino, J.; Gurevich, Boris; Glubokovskikh, S. (2017)
      © ASCE. Seismic dispersion and attenuation are important attributes for the detection and characterization of saturated fractured formations. An important mechanism for this is the wave-induced fluid flow (WIFF) between ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.