Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
New photocatalytic materials for stable reduction and/or oxidization of water by harvesting a wider range of visible light are indispensable to achieve high practical efficiency in artificial photosynthesis. In this work, we prepared 2D WO 3 ·H 2 O and WO 3 nanosheets by a one-pot hydrothermal method and sequent calcination, focusing on the effects of crystal transformation on band structure and photocatalytic performance for photocatalytic water oxidation in the presence of electron acceptors (Ag + ) under simulated solar light irradiation. The as-prepared WO 3 nanosheets exhibit enhanced rate of photocatalytic water oxidation, which is 6.3 and 3.6 times higher than that of WO 3 ·H 2 O nanosheets and commercial WO 3 , respectively. It is demonstrated that the releasing of water molecules in the crystal phase of tungstic acid results in transformation of the crystal phase from orthorhombic WO 3 ·H 2 O to monoclinic WO 3 , significantly improving the activity of photocatalytic water oxidation in the presence of Ag + because the shift-up of conduction band of WO 3 matches well with the electrode potential of Ag + /Ag(s), leading to efficient separation of photoinduced electrons and holes in pure WO 3 nanosheets.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, H.; Tian, W.; Zhou, L.; Sun, Hongqi; Tade, Moses; Wang, Shaobin (2016)Here we report a facile annealing process for homogeneous deposition of Co3O4 quantum dots (Co3O4 QDs) onto porous g-C3N4 nanosheets. It was discovered that pores were catalytically produced around Co3O4 QDs. In the ...
-
Wang, J.; Wang, Y.; Zhang, Y.; Uliana, A.; Zhu, J.; Liu, Jian; Van Der Bruggen, B. (2016)© 2016 American Chemical Society. Inspired by the rational design concept, a novel antimicrobial agent zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) was synthesized and utilized as a novel and efficient ...
-
Zhang, H.; Tian, W.; Li, Y.; Sun, Hongqi; Tade, Moses; Wang, Shaobin (2018)Herein, a facile interface-induced synthesis method is first established to newly fabricate two-dimensional (2D) bilayer nanosheets of WO3@CoWO4 as highly efficient catalysts for enhanced photo, electro and photoelectro-chemical ...