Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Novel multi-stage aluminium production: part 2 – experimental investigation on carbosulphidation of Al2O3 using H2S and sodiothermic reduction of Al2S3

    Access Status
    Fulltext not available
    Authors
    Huda, N.
    Khaliq, A.
    Rhamdhani, M.
    Sheppard, Drew
    Brooks, G.
    Monaghan, B.
    Prentice, L.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Huda, N. and Khaliq, A. and Rhamdhani, M. and Sheppard, D. and Brooks, G. and Monaghan, B. and Prentice, L. 2017. Novel multi-stage aluminium production: part 2 – experimental investigation on carbosulphidation of Al2O3 using H2S and sodiothermic reduction of Al2S3. Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 126 (4): pp. 245-258.
    Source Title
    Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy
    DOI
    10.1080/03719553.2016.1257411
    ISSN
    0371-9553
    School
    School of Electrical Engineering, Computing and Mathematical Science (EECMS)
    URI
    http://hdl.handle.net/20.500.11937/61566
    Collection
    • Curtin Research Publications
    Abstract

    In this paper, experimental investigation on the carbosulphidation of alumina (Al2O3) for aluminium (Al) production and the sodiothermic reduction of aluminium sulphide (Al2S3) are presented. Hydrogen sulphide (H2S) was used as a reductant and source of sulphur. This work is the second of two-parts paper series. The experimental investigations of the Stage-1 process (Al2O3 carbosulphidation) were carried out at 1100–1600°C using a laboratory scale horizontal tube resistance-furnace. H2S gas, diluted with argon (5% H2S and 95% Ar), was reacted with pellets of a mixture of γ-Al2O3 and C powders (1:6 molar ratio) to produce Al2S3. The effects of gas injection rate, pelletizing pressure, temperature and reaction time on the conversion of Al2O3 to Al2S3 were investigated. The X-ray diffraction results confirmed the formation of Al2S3(s) in the reaction product above 1400°C. The conversion of Al2O3 to Al2S3 was found to be 99.5% at 1600°C and 12 h. The kinetics analysis of alumina sulphidation using Ginstling-Brounshtein diffusion model suggested the overall reaction was controlled by the diffusion of H2S gas through the reaction product (liquid Al2S3). The activation energy of the alumina sulphidation reaction was calculated to be 148.5 kJ mol−1. It has also been demonstrated in this study that Al can be extracted from Al2S3 by sodiothermic reduction using Na or NaH. In the case of Na, a level of Al conversion of 75% has been observed for reaction at 290°C.

    Related items

    Showing items related by title, author, creator and subject.

    • Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water
      Yu, Yun (2009)
      Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • The organic geochemistry of marine-influenced coals.
      Sandison, Carolyn M. (2001)
      The importance of organic sulphur fixation in the preservation of organic matter in humic coal-forming environments is demonstrated in this thesis. The transgression of coal depositional systems by marine waters during ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.