Regularised nonnegative shared subspace learning
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Joint modeling of related data sources has the potential to improve various data mining tasks such as transfer learning, multitask clustering, information retrieval etc. However, diversity among various data sources might outweigh the advantages of the joint modeling, and thus may result in performance degradations. To this end, we propose a regularized shared subspace learning framework, which can exploit the mutual strengths of related data sources while being immune to the effects of the variabilities of each source. This is achieved by further imposing a mutual orthogonality constraint on the constituent subspaces which segregates the common patterns from the source specific patterns, and thus, avoids performance degradations. Our approach is rooted in nonnegative matrix factorization and extends it further to enable joint analysis of related data sources. Experiments performed using three real world data sets for both retrieval and clustering applications demonstrate the benefits of regularization and validate the effectiveness of the model. Our proposed solution provides a formal framework appropriate for jointly analyzing related data sources and therefore, it is applicable to a wider context in data mining.
Related items
Showing items related by title, author, creator and subject.
-
Gupta, Sunil Kumar (2011)The growing number of information sources has given rise to joint analysis. While the research community has mainly focused on analyzing data from a single source, there has been relatively few attempts on jointly analyzing ...
-
Gupta, Sunil; Phung, Dinh; Adams, Brett; Venkatesh, Svetha (2011)This paper presents a novel Bayesian formulation to exploit shared structures across multiple data sources, constructing foundations for effective mining and retrieval across disparate domains. We jointly analyze diverse ...
-
Gupta, Sunil; Phung, Dinh; Adams, Brett; Tran, Truyen; Venkatesh, Svetha (2010)Although tagging has become increasingly popular in online image and video sharing systems, tags are known to be noisy, ambiguous, incomplete and subjective. These factors can seriously affect the precision of a social ...