Geology, geochemistry, and some genetic discussion of the Chador-Malu iron oxide-apatite deposit, Bafq District, Central Iran
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
© 2015, Saudi Society for Geosciences.The Chador-Malu iron oxide-apatite system (Bafq District, Central Iran) contains the largest known iron ore deposit in Iran (pre-mining reserve of 400 Mt @ 55 % Fe), and comprises the pipe-like northern (this study) and the sill-like southern orebodies of predominantly massive ore, and a sodic-calcic alteration envelope. The geology and geochemistry of the Chador-Malu deposit demonstrates its similar characteristics to the Kiruna-type deposits. There is circumstantial evidence for rare earth elements (REE) mobilization during apatite leaching by high-temperature fluids and associated monazite nucleation. Pervasive actinolitization of the rhyolitic country rocks led to the formation of actinolite-rich metasomatic host rocks, which represent another evidence for high-temperature fluids at Chador-Malu. Hydrothermal mineralization is suggested by small iron ore veins (2–3 cm thick) and breccias cemented by iron oxides, as well as a Fe-metasomatism which overprints all types of host rock alteration. Based on REE geochemistry and spatial relationships, it is proposed that a potential source for metals and P could be late-stage Fe-P melt differentiates of the Cambrian magmatism, which is consistent with the late Fe-metasomatism of the host rocks. The proposed Fe-P melts and the mineralization would be linked by hydrothermal media through the zones of ring fracture at Chador-Malu and similar parts of the Bafq district.
Related items
Showing items related by title, author, creator and subject.
-
Bekker, A.; Planavsky, N.; Rasmussen, Birger; Krapez, Bryan; Hofmann, A.; Slack, J.; Rouxel, O.; Konhauser, K. (2014)Iron formations are economically significant, iron- and silica-rich sedimentary rocks that are restricted to Precambrian successions. There are no known modern or Phanerozoic analogues for these deposits that are comparable ...
-
Rasmussen, Birger; Fletcher, Ian; Bekker, Andrey; Muhling, Janet; Gregory, Courtney; Thorne, Alan (2012)Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric ...
-
Grainger, C.; Groves, D.; Tallarico, F.; Fletcher, Ian (2008)The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone ...