Synthesis of Al-Containing Spherical Mesocellular Silica Foams with Different Pore Sizes and Their Applications as Catalyst Supports for Hydrodesulfurization of Dibenzothiophene
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. In the present work, a series of Al-containing spherical mesostructured cellular silica foams (SMCFs) with different ultra-large pore sizes were successfully synthesized by simply adjusting the mass ratio (x) of the swelling agent 1,3,5-trimethylbenzene (TMB) to P123. The as-synthesized Al-SMCFs-x were utilized as NiMo catalyst supports for the hydrodesulfurization of dibenzothiophene. The characterization results showed that, compared with other studied NiMo/Al-SMCFs-x catalysts, the NiMo/Al-SMCFs-1.25 catalyst exhibited higher sulfidation degree, higher dispersions of Ni and Mo species, shorter length, and lower stacking number of MoS 2 slabs. It was also found that the NiMo/Al-SMCFs-1.25 catalyst possessed suitable physicochemical parameters [i.e., ultra-large pore size (27.5 nm), high surface area (383 m 2 g -1 ), and large pore volume (1.34 cm 3 g -1 ), resulting in the formation of more type II active sites with more brim active sites. Consequently, the NiMo/Al-SMCFs-1.25 catalyst displayed outstanding catalytic performance for the hydrodesulfurization of dibenzothiophene. Superb supports: A series of NiMo/Al-SMCFs-x (SMCFs=spherical mesostructured cellular silica foams) catalysts with different ultra-large mesopore sizes are successfully synthesized by simply adjusting the 1,3,5-trimethylbenzene/P123 mass ratio (x). Among all the studied catalysts, NiMo/Al-SMCFs-1.25 exhibited the best dibenzothiophene (DBT) hydrodesulfurization (HDS) performance. DDS=direct desulfurization, HYD=hydrogenation, CHB=cyclohexylbenzene, BP=biphenyl.
Related items
Showing items related by title, author, creator and subject.
-
Song, S.; Zhou, X.; Duan, A.; Zhao, Z.; Chi, K.; Zhang, M.; Jiang, G.; Liu, Jian; Li, J.; Wang, X. (2016)© 2016 Elsevier Inc. Ultra-large mesoporous silica materials using different micelle expanders including hexane, cyclohexane, 1,3,5-triisopropylbenzene and 1,3,5-triethylbenzene, have been successfully synthesized by the ...
-
Wang, X.; Meng, B.; Tan, X.; Zhang, X.; Zhuang, S.; Liu, Lihong. (2014)A series of titanium silicalite zeolite catalysts were successfully incorporated inside a Pd membrane reactor aiming to improve the direct hydroxylation of benzene to phenol. The correlation between the membrane structure ...
-
Muhammad, Syaifullah (2012)This research is focused on heterogeneous catalytic oxidation of phenol usually found in wastewater. Active metals of Ruthenium (Ru) and Cobalt (Co) have been impregnated on cheap support materials such as activated carbon ...