Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Application of DIP to detect power transformers axial displacement and disk space variation using FRA polar plot signature

    261340.pdf (1.855Mb)
    Access Status
    Open access
    Authors
    Aljohani, Omar
    Abu-Siada, Ahmed
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Aljohani, O. and Abu-Siada, A. 2017. Application of DIP to detect power transformers axial displacement and disk space variation using FRA polar plot signature. IEEE Transactions on Industrial Informatics. 13 (4): pp. 1794-1805.
    Source Title
    IEEE Transactions on Industrial Informatics
    DOI
    10.1109/TII.2016.2626779
    ISSN
    1551-3203
    School
    Department of Electrical and Computer Engineering
    Remarks

    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    URI
    http://hdl.handle.net/20.500.11937/63005
    Collection
    • Curtin Research Publications
    Abstract

    © 2005-2012 IEEE. While frequency response analysis (FRA) technique has been successfully used to assess the mechanical integrity of active parts within power transformers, it still exhibits some drawbacks including its inability to detect incipient and minor winding deformations and the requirement for an expert to analyze the results. Although several papers have investigated the impact of various faults on the transformer FRA signature, no attempt was made to automate and improve the fault detection accuracy of the current technique. The main contribution of this paper is the presentation of a new approach for the FRA technique through incorporating the magnitude and phase angle plots that can be measured using any commercial frequency response analyzer into one polar plot. Contrary to the current industry practice that only relies on the magnitude of the measured FRA signature for fault identification and quantification, the proposed polar plot that comprises more features than the magnitude plot will facilitate the use of digital image processing (DIP) techniques to improve the detection accuracy, standardize, and automate the FRA interpretation process. In this regard, three-dimensional models for two three-phase power transformers of different ratings, sizes, and windings structures are modeled using a finite element analysis technique to simulate various levels of axial displacement (AD) and disk space variation (DSV) at different locations of the transformer windings. Impact of minor fault levels on the proposed polar plot signature is investigated through the application of various DIP techniques. Simulation results are validated through practical measurements on a scaled-down transformer. Results show that the proposed polar plot along with the DIP technique is able to detect minor fault levels of AD and DSV with high accuracy.

    Related items

    Showing items related by title, author, creator and subject.

    • Application of digital image processing to detect transformer bushing faults and oil degradation using FRA polar plot signature
      Aljohani, O.; Abu-Siada, Ahmed (2017)
      Frequency Response Analysis (FRA) technique is commonly used to assess the mechanical integrity of power transformer core and windings. A few papers investigating the ability of FRA technique to detect bushing faults and ...
    • Experimental evaluation of detecting power transformer internal faults using FRA polar plot and texture analysis
      Zhao, X.; Yao, C.; Li, C.; Zhang, C.; Dong, S.; Abu-Siada, Ahmed; Liao, R. (2019)
      Power transformers are prone to short circuit faults and external harsh environmental conditions that may result in various internal winding and core deformations. Frequency response analysis (FRA) is the current technique ...
    • Application of Digital Image Processing to Detect Short-Circuit Turns in Power Transformers Using Frequency Response Analysis
      Aljohani, O.; Abu-Siada, Ahmed (2016)
      Although a frequency response analysis (FRA) technique has been extensively used to detect mechanical deformation within power transformers, interpretation of FRA signature still needs a high level of expertise to identify ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.