Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Cooperative control of battery energy storage systems in microgrids

    Access Status
    Fulltext not available
    Authors
    Hosseinimehr, Tahoura
    Ghosh, Arindam
    Shahnia, Farhad
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hosseinimehr, T. and Ghosh, A. and Shahnia, F. 2017. Cooperative control of battery energy storage systems in microgrids. International Journal of Electrical Power and Energy Systems. 87: pp. 109-120.
    Source Title
    International Journal of Electrical Power and Energy Systems
    DOI
    10.1016/j.ijepes.2016.12.003
    ISSN
    0142-0615
    School
    Department of Electrical and Computer Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP140103883
    URI
    http://hdl.handle.net/20.500.11937/63025
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 Elsevier Ltd This paper proposes a cooperative control of battery energy storage (BES) units within a microgrid (MG) which includes two control subsystems for charge and discharge operation mode of the BES. In addition, the proposed cooperative control strategy provides accurate reactive power sharing among the BES units. During discharge operation, the proposed strategy utilizes a SoC-based droop control in order to avoid promptly depleting of the BES units, by dedicating the highest priority to their SoC level and respecting their power rating. This is achieved without any disturbance in the power balance of the MG. In addition, during charge operation of the BES units, the proposed control method uses a proportional-integral (PI) controller to limit the BES absorbing power and match it with the available surplus power from the renewable energy sources (RESs). This in turn avoids any power imbalance within the system. Finally, to utilize the extra capacity of the BES converters and also to avoid overloading of RESs, a new adaptive virtual impedance (AVI) strategy is proposed here which provides accurate reactive power sharing by imposing a virtual impedance in series with the coupling impedance of each BES and RES unit. The system performance is validated through extensive simulations carried out in PSCAD/EMTDC software.

    Related items

    Showing items related by title, author, creator and subject.

    • Power management strategies for off-grid hybrid power systems
      Lim, Pei Yi (2011)
      At present, there are still a large number of people living in isolated areas, particularly in developing countries, who have no immediate access to the main electricity grid. Most of the energy demands of these remote ...
    • Application of SMES Unit to improve the performance of doubly fed induction generator based WECS
      Yunus, A. M. Shiddiq (2012)
      Due to the rising demand of energy over several decades, conventional energy resources have been continuously and drastically explored all around the world. As a result, global warming is inevitable due to the massive ...
    • Enhanced control of DFIG-based wind power plants to comply with the international grid codes
      Mohseni, Mansour (2011)
      A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.