Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    In Situ Atomic Force Microscopy Imaging of Octacalcium Phosphate Crystallization and Its Modulation by Amelogenin’s C-Terminus

    Access Status
    Fulltext not available
    Authors
    Wu, S.
    Yu, M.
    Li, M.
    Wang, L.
    Putnis, Christine
    Putnis, Andrew
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wu, S. and Yu, M. and Li, M. and Wang, L. and Putnis, C. and Putnis, A. 2017. In Situ Atomic Force Microscopy Imaging of Octacalcium Phosphate Crystallization and Its Modulation by Amelogenin’s C-Terminus. Crystal Growth & Design. 17 (4): pp. 2194-2202.
    Source Title
    Crystal Growth & Design
    DOI
    10.1021/acs.cgd.7b00129
    ISSN
    1528-7483
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/63047
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 American Chemical Society. Amelogenin proteins play a critical role in controlling crystal growth and orientation into highly organized calcium phosphate (Ca-P) minerals during tooth enamel formation. However, real-time observations for understanding the kinetics and mechanisms of Ca-P surface crystallization and its modulation by amelogenin have been lacking. We monitor the kinetics of the (100) surface growth of octacalcium phosphate (OCP) with precisely defined thermodynamic driving forces in the presence of amelogenin’s C-terminus peptides inside a fluid cell of an atomic force microscope with a controlled near-physiological environment. During in situ growth via a nonclassical particle attachment pathway, an obviously elongated aggregation of Ca-P nanoparticles induced by the assembly of amelogenin’s C-termini was observed. The nanostructured fibrous assemblies, reminiscent of extracellular matrix, are able to bind Ca-P nanoparticles and direct OCP mineralization. This was analyzed and rationalized through single-molecule determination of the binding free energy of the C-terminal fragment adsorbed to the (100) face of OCP. Combining in situ growth kinetics with force spectroscopy reveals the shape evolution from spherical particles to elongated nanorods resembling the nanostructure of enamel crystallites. The findings improve the fundamental understanding of natural biomineralization through nonclassical crystallization routes and amelogenin self-assembly.

    Related items

    Showing items related by title, author, creator and subject.

    • Solubility and crystal growth of sodium nitrate from mixed alcohol – water solvents
      Rossiter, Angelina Jane (2009)
      Due to the ductile nature of the sodium nitrate crystal which deforms plastically under high levels of strain, most of the crystal growth studies in aqueous solution have focussed on the influence of tensile strain, ...
    • Mechanims of lactose crystallisation
      Dincer, Tuna (2000)
      Lactose is the major carbohydrate in milk. The presence of lactose in whey constitutes a significant pollution problem for dairy factories. At the same time, there is an increasing market for high quality crystalline ...
    • Investigation of growth rate dispersion in lactose crystallisation by AFM
      Dincer, Tuna; Ogden, Mark; Parkinson, Gordon (2014)
      α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion (GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has not been further investigated to date. In ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.