Show simple item record

dc.contributor.authorSarmiento, A.
dc.contributor.authorEspath, L.
dc.contributor.authorVignal, P.
dc.contributor.authorDalcin, L.
dc.contributor.authorParsani, M.
dc.contributor.authorCalo, Victor
dc.date.accessioned2018-02-06T06:15:22Z
dc.date.available2018-02-06T06:15:22Z
dc.date.created2018-02-06T05:50:02Z
dc.date.issued2017
dc.identifier.citationSarmiento, A. and Espath, L. and Vignal, P. and Dalcin, L. and Parsani, M. and Calo, V. 2017. An energy-stable generalized-α method for the Swift-Hohenberg equation. Journal of Computational and Applied Mathematics. 344: pp. 836-851.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/63144
dc.identifier.doi10.1016/j.cam.2017.11.004
dc.description.abstract

We propose a second-order accurate energy-stable time-integration method that controls the evolution of numerical instabilities introducing numerical dissipation in the highest-resolved frequencies. Our algorithm further extends the generalized-a method and provides control over dissipation via the spectral radius. We derive the first and second laws of thermodynamics for the Swift-Hohenberg equation and provide a detailed proof of the unconditional energy stability of our algorithm. Finally, we present numerical results to verify the energy stability and its second-order accuracy in time.

dc.publisherElsevier
dc.titleAn energy-stable generalized-α method for the Swift-Hohenberg equation
dc.typeJournal Article
dcterms.source.issn0377-0427
dcterms.source.titleJournal of Computational and Applied Mathematics
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record