Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Array-aided single-frequency state-space RTK with combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations

    Access Status
    Fulltext not available
    Authors
    Li, Wei
    Nadarajah, Nandakumaran
    Teunissen, Peter
    Khodabandeh, Amir
    Chai, Y.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, W. and Nadarajah, N. and Teunissen, P. and Khodabandeh, A. and Chai, Y. 2017. Array-aided single-frequency state-space RTK with combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations. Journal of Surveying Engineering. 143 (4).
    Source Title
    Journal of Surveying Engineering
    DOI
    10.1061/(ASCE)SU.1943-5428.0000227
    ISSN
    0733-9453
    School
    Department of Spatial Sciences
    URI
    http://hdl.handle.net/20.500.11937/63167
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 American Society of Civil Engineers. The concept of real-time kinematic precise point positioning (PPP-RTK) is to achieve integer ambiguity resolution (IAR) at a single global navigation satellite system (GNSS) user by providing network-derived satellite phase biases (SPBs) in addition to the standard PPP corrections. The integerness of the user ambiguities gets recovered and resolved, obtaining high-precision position solutions with the aid of the precise carrier-phase observables. Most of current PPP-RTK methods focus on processing dual-frequency or multifrequency GNSS network observations. The new developing Indian regional navigation satellite system (IRNSS), however, provides only a single-frequency signal in L-band, and shares the L5 frequency with the American global positioning system (GPS), the European Galileo, and the Japanese quasi-zenith satellite system (QZSS). This contribution proposes a new array-aided state-space RTK (SS-RTK) method following the concept of PPP-RTK, which is applicable to the single-frequency network data processing. A small array of multi-GNSS stations, separated by a few meters, takes the role of reference station to provide a batch of single-frequency RTK corrections. Similar to PPP-RTK, the single-frequency sta nd-alone user ambiguities are a double-differenced (DD) form after applying the SS-RTK corrections. Based on the proposed array-aided SS-RTK concept, the authors analyze the capability of the single-receiver positioning with IAR using L5/E5a frequency observations from IRNSS, as well as GPS, Galileo, and QZSS. Results from real-data experiments demonstrate that even though stand-alone RTK using current IRNSS satellites is not yet possible, they effectively contribute to the tightly integrated multisystem RTK. By increasing the number of antennas in the array used for SS-RTK corrections, the user would achieve more precise and reliable positions. After increasing the dimension of the array to four antennas, a 4-10% improvement in the IAR success rate is experienced. Moreover, the convergence time of the float solutions, reaching a subdecimeter precision level, reduces from 30 to 40 min (single-antenna array) to about 20 min (four-antenna array).

    Related items

    Showing items related by title, author, creator and subject.

    • A method for processing GNSS data from regional reference networks to enable single-frequency PPP-RTK
      Zhang, B.; Odijk, Dennis (2015)
      Global Navigation Satellite System (GNSS) data from reference station networks deployed globally can facilitate positioning, navigation and timing applications. To enable precise positioning for dual-frequency users, ...
    • Single-Frequency PPP-RTK: Theory and Experimental Results
      Odijk, D.; Teunissen, P.; Khodabandeh, Amir (2014)
      Integer ambiguity resolution enabled Precise (cm-level) Point Positioning (PPP) is feasible if corrections from a GPS network of CORS stations are applied to the single-receiver phase and code data of a user. The concept ...
    • Single-Frequency PPP-RTK: Theory and Experimental Results
      Odijk, Dennis; Teunissen, Peter; Khodabandeh, A. (2014)
      Integer ambiguity resolution enabled Precise (cm-level) Point Positioning (PPP) is feasible if corrections from a GPS network of CORS stations are applied to the single-receiver phase and code data of a user. The concept ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.