Show simple item record

dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorVo, Ba Tuong
dc.date.accessioned2018-02-06T06:15:45Z
dc.date.available2018-02-06T06:15:45Z
dc.date.created2018-02-06T05:49:57Z
dc.date.issued2017
dc.identifier.citationVo, B. and Vo, B.T. 2017. An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/63168
dc.identifier.doi10.23919/ICIF.2017.8009647
dc.description.abstract

© 2017 International Society of Information Fusion (ISIF). This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. The solution exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has a complexity in the order of the product of the number of measurements from each sensor, and quadratic in the number of hypothesized objects.

dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP170104854
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP130104404
dc.titleAn implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling
dc.typeConference Paper
dcterms.source.title20th International Conference on Information Fusion, Fusion 2017 - Proceedings
dcterms.source.series20th International Conference on Information Fusion, Fusion 2017 - Proceedings
dcterms.source.isbn9780996452700
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Science (EECMS)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record