Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimization of integrated production system using advanced proxy based models: A new approach

    Access Status
    Fulltext not available
    Authors
    Ghassemzadeh, S.
    Hashempour Charkhi, Amir
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ghassemzadeh, S. and Hashempour Charkhi, A. 2016. Optimization of integrated production system using advanced proxy based models: A new approach. Journal of Natural Gas Science & Engineering. 35 (Part A): pp. 89-96.
    Source Title
    Journal of Natural Gas Science & Engineering
    DOI
    10.1016/j.jngse.2016.08.045
    ISSN
    1875-5100
    URI
    http://hdl.handle.net/20.500.11937/63199
    Collection
    • Curtin Research Publications
    Abstract

    Hydrocarbon production can be elevated using gas lift especially when reservoir pressure declines throughout reservoir life. Specific amount of compressed gas distributes among wells during a gas lift operation through the orifice installed on the tubing string. Since the available gas is usually less than the amount of gas needed to obtain the maximum rate of extraction in each individual well, it is essential to determine and inject the optimal amount of gas into each well. As reservoir conditions alter over time, these optimal rates change during the life of the field; additionally, the recent and periodic fluctuation in oil price has implied a need for an economical and reliable alternative to the former discontinuous optimization methods. Therefore, to effectively increase the profit of the project and reach true potential of any hydrocarbon field, formulation of a practical dynamic optimization scheme is inevitable. Dynamic models often use integrated models of upstream and downstream systems. Since running commercial simulation software is very time-consuming, look-up tables (interpolated values) are used to reduce the laboriousness; however, the interpolations can lead to miscalculations. This study proposes a fully-dynamic novel approach to optimize a gas lift system by implementing proxy models to minimize an objective function, being the resource usage. First, machine-learning based proxy models trained with the datasets from simulation software are used. Later, the genetic algorithm GA is coupled to the model and is performed alongside the well proxy model to optimize the gas injection rate by evaluating the fitness function being net present value (NPV). The whole procedure is repeated iteratively over many time steps throughout the life of the reservoir enabling near real-time optimization. The results assert that the proposed dynamic scheme is able to fully understand the relationship between the different components of the production system. By imitating them it is thrived to optimize the gas lift operation dynamically over a specific time period. Moreover, the model is compared and verified by a semi-dynamic model reported in the literature.

    Related items

    Showing items related by title, author, creator and subject.

    • A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms
      Tan, Y.; Song, Y.; Liu, Xin; Wang, X.; Cheng, J. (2016)
      © 2017 Elsevier B.V.Offshore oil and gas platforms (OOGPs) usually have a lifetime of 30-40. years. An increasing number of OOGPs across the world will be retired and decommissioned in the coming decade. Therefore, a safe ...
    • Application of downhole gas compression to improve productivity for depleted natural gas reservoir
      Ismail, M.; Hossain, Mofazzal (2013)
      Selection of an optimal artificial lift technology to prolong a depleted gas reservoir has always been a challenge in the oil and gas industry. To be able to have a solution that has low intervention costs and a long ...
    • Coarse grid simulation of gas-solid flows in riser
      Shah, Milinkumar T. (2011)
      Gas-solid risers have been extensively used as multiphase reactors in circulating fluidized bed (CFB) system such as fluid catalytic cracking (FCC) and Circulating fluidized bed combustion (CFBC). In FCC, a riser facilitates ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.