Robust Segmentation for Large Volumes of Laser Scanning Three-Dimensional Point Cloud Data
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper investigates the problems of outliers and/or noise in surface segmentation and proposes a statistically robust segmentation algorithm for laser scanning 3-D point cloud data. Principal component analysis (PCA)-based local saliency features, e.g., normal and curvature, have been frequently used in many ways for point cloud segmentation. However, PCA is sensitive to outliers; saliency features from PCA are nonrobust and inaccurate in the presence of outliers; consequently, segmentation results can be erroneous and unreliable. As a remedy, robust techniques, e.g., RANdom SAmple Consensus (RANSAC), and/or robust versions of PCA (RPCA) have been proposed. However, RANSAC is influenced by the well-known swamping effect, and RPCA methods are computationally intensive for point cloud processing. We propose a region growing based robust segmentation algorithm that uses a recently introduced maximum consistency with minimum distance based robust diagnostic PCA (RDPCA) approach to get robust saliency features. Experiments using synthetic and laser scanning data sets show that the RDPCA-based method has an intrinsic ability to deal with outlier-and/or noise-contaminated data. Results for a synthetic data set show that RDPCA is 105 times faster than RPCA and gives more accurate and robust results when compared with other segmentation methods. Compared with RANSAC and RPCA based methods, RDPCA takes almost the same time as RANSAC, but RANSAC results are markedly worse than RPCA and RDPCA results. Coupled with a segment merging algorithm, the proposed method is efficient for huge volumes of point cloud data consisting of complex objects surfaces from mobile, terrestrial, and aerial laser scanning systems.
Related items
Showing items related by title, author, creator and subject.
-
Nurunnabi, A.; Belton, David; West, Geoff (2014)This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis ...
-
Nurunnabi, A.; West, Geoff; Belton, David (2015)This paper proposes two robust statistical techniques for outlier detection and robust saliency features, such as surface normal and curvature, estimation in laser scanning 3D point cloud data. One is based on a robust ...
-
Nurunnabi, Abdul; Belton, David; West, Geoff (2012)Objectives: Surface reconstruction and fitting for geometric primitives and three Dimensional (3D) modeling is a fundamental task in the field of photogrammetry and reverse engineering. However it is impractical to get ...