Show simple item record

dc.contributor.authorFergusson, Kevin
dc.date.accessioned2017-01-30T10:52:12Z
dc.date.available2017-01-30T10:52:12Z
dc.date.created2015-09-29T01:56:27Z
dc.date.issued2006
dc.identifier.citationFergusson, K. 2006. Partitions into large unequal parts from a general sequence. Journal of the Australian Mathematical Society. 80 (1): pp. 13-44.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/6329
dc.description.abstract

An asymptotic estimate is obtained for the number of partitions of the positive integer n into unequal parts coming from a sequence u, with each part greater than m, under suitable conditions on the sequence u. The estimate holds uniformly with respect to integers m such that $0\le m \le n^{1-\delta }$, as $n\to\infty $, where $\delta $ is a given real number, such that $0<\delta < 1$.

dc.publisherCambridge University Press
dc.titlePartitions into large unequal parts from a general sequence
dc.typeJournal Article
dcterms.source.volume80
dcterms.source.number1
dcterms.source.startPage13
dcterms.source.endPage44
dcterms.source.issn1446-7887
dcterms.source.titleJournal of the Australian Mathematical Society
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record