A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
dc.contributor.author | Xu, F. | |
dc.contributor.author | Li, X. | |
dc.contributor.author | Cui, Y. | |
dc.contributor.author | Wu, Yong Hong | |
dc.date.accessioned | 2018-02-06T06:16:30Z | |
dc.date.available | 2018-02-06T06:16:30Z | |
dc.date.created | 2018-02-06T05:49:53Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Xu, F. and Li, X. and Cui, Y. and Wu, Y.H. 2017. A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Zeitschrift fur Angewandte Mathematik und Physik. 68 (6). | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/63325 | |
dc.identifier.doi | 10.1007/s00033-017-0874-9 | |
dc.description.abstract |
© 2017, Springer International Publishing AG. In this paper, we are concerned with the regularity criterion for weak solutions to the 3D incompressible MHD equations. We show that if any two groups functions of (? 1 u 1 , ? 1 b 1 ) , (? 2 u 2 , ? 2 b 2 ) and (? 3 u 3 , ? 3 b 3 ) belong to the space L?([0,T);Lr(R3)),2?+3r=2,32 < r=8, then the solution (u, b) to the MHD equations actually is smooth on (0, T). | |
dc.title | A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations | |
dc.type | Journal Article | |
dcterms.source.volume | 68 | |
dcterms.source.number | 6 | |
dcterms.source.issn | 0044-2275 | |
dcterms.source.title | Zeitschrift fur Angewandte Mathematik und Physik | |
curtin.department | School of Electrical Engineering, Computing and Mathematical Science (EECMS) | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |